Hector Migallon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4759082/publications.pdf

Version: 2024-02-01

933264 887953 49 339 10 17 citations g-index h-index papers 50 50 50 414 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Enhanced Parallel Sine Cosine Algorithm for Constrained and Unconstrained Optimization. Mathematics, 2022, 10, 1166.	1.1	2
2	A Parallel Metaheuristic Approach to Reduce Vehicle Travel Time for Smart Cities Sustainability. Springer Proceedings in Complexity, 2021, , 37-49.	0.2	1
3	A Parallel Meta-Heuristic Approach to Reduce Vehicle Travel Time in Smart Cities. Applied Sciences (Switzerland), 2021, 11, 818.	1.3	3
4	Performance Overview of the Latest Video Coding Proposals: HEVC, JEM and VVC. Journal of Imaging, 2021, 7, 39.	1.7	4
5	Multi-level parallel chaotic Jaya optimization algorithms for solving constrained engineering design problems. Journal of Supercomputing, 2021, 77, 12280-12319.	2.4	12
6	Load Balancing Strategies for Slice-Based Parallel Versions of JEM Video Encoder. Algorithms, 2021, 14, 320.	1.2	0
7	Parallel implementation of metaheuristics for optimizing tool path computation on CNC machining. Computers in Industry, 2020, 123, 103322.	5.7	14
8	Efficient parallel and fast convergence chaotic Jaya algorithms. Swarm and Evolutionary Computation, 2020, 56, 100698.	4.5	13
9	Settings-Free Hybrid Metaheuristic General Optimization Methods. Mathematics, 2020, 8, 1092.	1.1	4
10	Comparison of High Performance Parallel Implementations of TLBO and Jaya Optimization Methods on Manycore GPU. IEEE Access, 2019, 7, 133822-133831.	2.6	9
11	Multipopulation-based multi-level parallel enhanced Jaya algorithms. Journal of Supercomputing, 2019, 75, 1697-1716.	2.4	12
12	Efficient Subpopulation Based Parallel TLBO Optimization Algorithms. Electronics (Switzerland), 2019, 8, 19.	1.8	5
13	Non-Stationary Acceleration Strategies for PageRank Computing. Mathematics, 2019, 7, 911.	1.1	O
14	A highly scalable parallel encoder version of the emergent JEM video encoder. Journal of Supercomputing, 2019, 75, 1429-1442.	2.4	1
15	Jaya optimization algorithm with GPU acceleration. Journal of Supercomputing, 2019, 75, 1094-1106.	2.4	11
16	Heterogeneous CPU plus GPU approaches for HEVC. Journal of Supercomputing, 2019, 75, 1215-1226.	2.4	5
17	A heuristic relaxed extrapolated algorithm for accelerating PageRank. Advances in Engineering Software, 2018, 120, 88-95.	1.8	8
18	Parallel two-stage algorithms for solving the PageRank problem. Advances in Engineering Software, 2018, 125, 188-199.	1.8	9

#	Article	IF	Citations
19	Parallel Improvements of the Jaya Optimization Algorithm. Applied Sciences (Switzerland), 2018, 8, 819.	1.3	7
20	Frame-Based and Subpicture-Based Parallelization Approaches of the HEVC Video Encoder. Applied Sciences (Switzerland), 2018, 8, 854.	1.3	3
21	Distributed memory parallel approaches for HEVC encoder. Journal of Supercomputing, 2017, 73, 164-175.	2.4	6
22	Performance analysis of frame partitioning in parallel HEVC encoders. Journal of Supercomputing, 2017, 73, 543-556.	2.4	2
23	GPU-based HEVC intra-prediction module. Journal of Supercomputing, 2017, 73, 455-468.	2.4	1
24	GPU-Based Heterogeneous Coding Architecture for HEVC. Lecture Notes in Computer Science, 2016, , 529-536.	1.0	1
25	Synchronous and asynchronous HEVC parallel encoder versions based on a GOP approach. Advances in Engineering Software, 2016, 101, 37-49.	1.8	2
26	Parallel alternating iterative algorithms with and without overlapping on multicore architectures. Advances in Engineering Software, 2016, 101, 27-36.	1.8	2
27	Shared Memory Tile-Based vs Hybrid Memory GOP-Based Parallel Algorithms for HEVC Encoder. Lecture Notes in Computer Science, 2016, , 521-528.	1.0	2
28	Slice-based parallel approach for HEVC encoder. Journal of Supercomputing, 2015, 71, 1882-1892.	2.4	23
29	Parallel strategies analysis over the HEVC encoder. Journal of Supercomputing, 2014, 70, 671-683.	2.4	10
30	Parallel relaxed and extrapolated algorithms for computing PageRank. Journal of Supercomputing, 2014, 70, 637-648.	2.4	6
31	Multicore-based 3D-DWT video encoder. Eurasip Journal on Advances in Signal Processing, 2013, 2013, .	1.0	0
32	GPU-based 3D lower tree wavelet video encoder. Eurasip Journal on Advances in Signal Processing, 2013, 2013, .	1.0	1
33	Fast 3D wavelet transform on multicore and many-core computing platforms. Journal of Supercomputing, 2013, 65, 848-865.	2.4	8
34	Enhancing LTW image encoder with perceptual coding and GPU-optimized 2D-DWT transform. Eurasip Journal on Advances in Signal Processing, 2013, 2013, .	1.0	1
35	Parallel strategies for 2D Discrete Wavelet Transform in shared memory systems and GPUs. Journal of Supercomputing, 2013, 64, 4-16.	2.4	21
36	On the Design of a Bioacoustic Sensor for the Early Detection of the Red Palm Weevil. Sensors, 2013, 13, 1706-1729.	2.1	49

#	Article	IF	Citations
37	Improving image compression through the use of evolutionary computing algorithms. WIT Transactions on Information and Communication Technologies, $2013, \ldots$	0.0	1
38	Monitoring Pest Insect Traps by Means of Low-Power Image Sensor Technologies. Sensors, 2012, 12, 15801-15819.	2.1	52
39	GPU-based parallel algorithms for sparse nonlinear systems. Journal of Parallel and Distributed Computing, 2012, 72, 1098-1105.	2.7	13
40	Parallel nonlinear preconditioners on multicore architectures. Journal of Supercomputing, 2011, 58, 160-167.	2.4	1
41	A Parallel Python library for nonlinear systems. Journal of Supercomputing, 2011, 58, 438-448.	2.4	0
42	Alternating two-stage methods for consistent linear systems with applications to the parallel solution of Markov chains. Advances in Engineering Software, 2010, 41, 13-21.	1.8	8
43	PyPnetCDF: A high level framework for parallel access to netCDF files. Advances in Engineering Software, 2010, 41, 92-98.	1.8	3
44	A Case Study in Distributing a SystemC Model. Lecture Notes in Computer Science, 2009, , 99-106.	1.0	0
45	Parallel Newton two-stage methods based on ILU factorizations for nonlinear systems. Numerical Linear Algebra With Applications, 2006, 13, 553-572.	0.9	1
46	Parallel Newton Iterative Methods Based on Incomplete LU Factorizations for Solving Nonlinear Systems. Lecture Notes in Computer Science, 2005, , 716-729.	1.0	0
47	Parallelization Strategies for Computing PageRank., 0, , .		2
48	Speeding Up in Distributed SystemC Simulations. Advances in Soft Computing, 0, , 24-28.	0.4	0
49	GPU-Based Parallel Nonlinear Conjugate Gradient Algorithms. , 0, , .		0