
Dolors Serra Cucurull

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4758759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of ATG3 ameliorates liver steatosis by increasing mitochondrial function. Journal of Hepatology, 2022, 76, 11-24.	3.7	16
2	Inhibition of carnitine palmitoyltransferase 1A in hepatic stellate cells protects against fibrosis. Journal of Hepatology, 2022, 77, 15-28.	3.7	31
3	Angiocrine polyamine production regulates adiposity. Nature Metabolism, 2022, 4, 327-343.	11.9	31
4	Ptpn1 deletion protects oval cells against lipoapoptosis by favoring lipid droplet formation and dynamics. Cell Death and Differentiation, 2022, 29, 2362-2380.	11.2	4
5	Effects of High-Fat Diet and Maternal Binge-Like Alcohol Consumption and Their Influence on Cocaine Response in Female Mice Offspring. International Journal of Neuropsychopharmacology, 2021, 24, 77-88.	2.1	2
6	Inhibition of fatty acid synthesis induces differentiation and reduces tumor burden in childhood neuroblastoma. IScience, 2021, 24, 102128.	4.1	15
7	Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis. Journal of Clinical Investigation, 2021, 131, .	8.2	147
8	White adipose tissue-infiltrated CD11b+ myeloid cells are a source of S100A4, a new potential marker of hepatic damage. European Journal of Endocrinology, 2021, 184, 533-541.	3.7	2
9	Infusion of Phagocytic Macrophages Overexpressing CPT1a Ameliorates Kidney Fibrosis in the UUO Model. Cells, 2021, 10, 1650.	4.1	6
10	Hypothalamus-skeletal muscle crosstalk during exercise and its role in metabolism modulation. Biochemical Pharmacology, 2021, 190, 114640.	4.4	13
11	White adipose tissue dysfunction in obesity and aging. Biochemical Pharmacology, 2021, 192, 114723.	4.4	70
12	Poly-ion complex micelles effectively deliver CoA-conjugated CPT1A inhibitors to modulate lipid metabolism in brain cells. Biomaterials Science, 2021, 9, 7076-7091.	5.4	10
13	Moderate SIRT1 overexpression protects against brown adipose tissue inflammation. Molecular Metabolism, 2020, 42, 101097.	6.5	17
14	Liver CPT1A gene therapy reduces dietâ€induced hepatic steatosis in mice and highlights potential lipid biomarkers for human NAFLD. FASEB Journal, 2020, 34, 11816-11837.	0.5	44
15	Dietary Options for Rodents in the Study of Obesity. Nutrients, 2020, 12, 3234.	4.1	29
16	An overview of nanomedicines for neuron targeting. Nanomedicine, 2020, 15, 1617-1636.	3.3	12
17	Low-density lipoprotein receptor-related protein 1 deficiency in cardiomyocytes reduces susceptibility to insulin resistance and obesity. Metabolism: Clinical and Experimental, 2020, 106, 154191.	3.4	7
18	Impact of Adaptive Thermogenesis in Mice on the Treatment of Obesity. Cells, 2020, 9, 316.	4.1	33

#	Article	IF	CITATIONS
19	Brown Adipose Tissue in Obesity and Diabetes. , 2020, , 35-54.		0
20	Dietary Sugars Alter Hepatic Fatty Acid Oxidation via Transcriptional and Post-translational Modifications of Mitochondrial Proteins. Cell Metabolism, 2019, 30, 735-753.e4.	16.2	136
21	Mechanisms of Impaired Brown Adipose Tissue Recruitment in Obesity. Frontiers in Physiology, 2019, 10, 94.	2.8	78
22	Hypothalamic endocannabinoids inversely correlate with the development of diet-induced obesity in male and female mice. Journal of Lipid Research, 2019, 60, 1260-1269.	4.2	13
23	CPT1C in the ventromedial nucleus of the hypothalamus is necessary for brown fat thermogenesis activation in obesity. Molecular Metabolism, 2019, 19, 75-85.	6.5	27
24	Sensing of nutrients by CPT1C regulates late endosome/lysosome anterograde transport and axon growth. ELife, 2019, 8, .	6.0	20
25	The BACE1 product sAPPÎ ² induces ER stress and inflammation and impairs insulin signaling. Metabolism: Clinical and Experimental, 2018, 85, 59-75.	3.4	26
26	Ghrelin Causes a Decline in GABA Release by Reducing Fatty Acid Oxidation in Cortex. Molecular Neurobiology, 2018, 55, 7216-7228.	4.0	10
27	Targeting AgRP neurons to maintain energy balance: Lessons from animal models. Biochemical Pharmacology, 2018, 155, 224-232.	4.4	16
28	New approaches targeting brown adipose tissue transplantation as a therapy in obesity. Biochemical Pharmacology, 2018, 155, 346-355.	4.4	39
29	CPT1C promotes human mesenchymal stem cells survival under glucose deprivation through the modulation of autophagy. Scientific Reports, 2018, 8, 6997.	3.3	28
30	(â^')-UB006: A new fatty acid synthase inhibitor and cytotoxic agent without anorexic side effects. European Journal of Medicinal Chemistry, 2017, 131, 207-221.	5.5	12
31	Bioenergetics: Brown Adipose Tissue Bioenergetics: A New Methodological Approach (Adv. Sci. 4/2017). Advanced Science, 2017, 4, .	11.2	0
32	Hypothalamic Regulation of Liver and Muscle Nutrient Partitioning by Brain-Specific Carnitine Palmitoyltransferase 1C in Male Mice. Endocrinology, 2017, 158, 2226-2238.	2.8	18
33	Brown Adipose Tissue Bioenergetics: A New Methodological Approach. Advanced Science, 2017, 4, 1600274.	11.2	16
34	Ceramides and mitochondrial fatty acid oxidation in obesity. FASEB Journal, 2017, 31, 1263-1272.	0.5	83
35	HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nature Communications, 2017, 8, 1769.	12.8	303
36	Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice. Scientific Reports, 2017, 7, 16082.	3.3	139

#	Article	IF	CITATIONS
37	Short-term vitamin E treatment impairs reactive oxygen species signaling required for adipose tissue expansion, resulting in fatty liver and insulin resistance in obese mice. PLoS ONE, 2017, 12, e0186579.	2.5	28
38	Clinical and therapeutic relevance of the metabolic oncogene fatty acid synthase in HER2+ breast cancer. Histology and Histopathology, 2017, 32, 687-698.	0.7	40
39	Rapamycin negatively impacts insulin signaling, glucose uptake and uncoupling protein-1 in brown adipocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1929-1941.	2.4	18
40	Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise. Cell Metabolism, 2016, 23, 1078-1092.	16.2	302
41	Fatty acid metabolism and the basis of brown adipose tissue function. Adipocyte, 2016, 5, 98-118.	2.8	103
42	Carnitine palmitoyltransferase 1C: From cognition to cancer. Progress in Lipid Research, 2016, 61, 134-148.	11.6	102
43	Carnitine Palmitoyltransferase 1 Increases Lipolysis, UCP1 Protein Expression and Mitochondrial Activity in Brown Adipocytes. PLoS ONE, 2016, 11, e0159399.	2.5	47
44	Fatty acid synthase is a metabolic marker of cell proliferation rather than malignancy in ovarian cancer and its precursor cells. International Journal of Cancer, 2015, 136, 2078-2090.	5.1	60
45	Vitamin <scp>E</scp> reduces adipose tissue fibrosis, inflammation, and oxidative stress and improves metabolic profile in obesity. Obesity, 2015, 23, 1598-1606.	3.0	90
46	Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E756-E769.	3.5	143
47	Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes. Free Radical Biology and Medicine, 2015, 84, 263-278.	2.9	50
48	Altered Circadian Rhythm and Metabolic Gene Profile in Rats Subjected to Advanced Light Phase Shifts. PLoS ONE, 2015, 10, e0122570.	2.5	33
49	Long-Term Increased Carnitine Palmitoyltransferase 1A Expression in Ventromedial Hypotalamus Causes Hyperphagia and Alters the Hypothalamic Lipidomic Profile. PLoS ONE, 2014, 9, e97195.	2.5	23
50	Central Ceramide-Induced Hypothalamic Lipotoxicity and ER Stress Regulate Energy Balance. Cell Reports, 2014, 9, 366-377.	6.4	195
51	Enhancing Hepatic Fatty Acid Oxidation as a Strategy for Reversing Metabolic Disorders Programmed by Maternal Undernutrition During Gestation. Cellular Physiology and Biochemistry, 2014, 33, 1498-1515.	1.6	7
52	Convenient synthesis of C75, an inhibitor of FAS and CPT1. RSC Advances, 2013, 3, 6564.	3.6	3
53	Mitochondrial Fatty Acid Oxidation in Obesity. Antioxidants and Redox Signaling, 2013, 19, 269-284.	5.4	175
54	Important role of ventromedial hypothalamic carnitine palmitoyltransferase-1a in the control of food intake. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E336-E347.	3.5	11

#	Article	IF	CITATIONS
55	Hypothalamic Ceramide Levels Regulated by CPT1C Mediate the Orexigenic Effect of Ghrelin. Diabetes, 2013, 62, 2329-2337.	0.6	82
56	Differential Pharmacologic Properties of the Two C75 Enantiomers: (+)â€C75 Is a Strong Anorectic Drug; (â^')â€C75 Has Antitumor Activity. Chirality, 2013, 25, 281-287.	2.6	28
57	Primary retrovesical hydatidosis as a cause of chronic kidney disease. Nefrologia, 2013, 33, 285-6.	0.4	1
58	Ceramide Levels Regulated by Carnitine Palmitoyltransferase 1C Control Dendritic Spine Maturation and Cognition. Journal of Biological Chemistry, 2012, 287, 21224-21232.	3.4	71
59	Molecular therapy for obesity and diabetes based on a long-term increase in hepatic fatty-acid oxidation. Hepatology, 2011, 53, 821-832.	7.3	114
60	Reply:. Hepatology, 2011, 53, 2145-2146.	7.3	0
61	Malonyl-CoA mediates leptin hypothalamic control of feeding independent of inhibition of CPT-1a. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R209-R217.	1.8	19
62	Preparation of αâ€labeled aldehydes by baseâ€catalyzed exchange reactions. Journal of Labelled Compounds and Radiopharmaceuticals, 2010, 53, 556-558.	1.0	17
63	C75 is converted to C75-CoA in the hypothalamus, where it inhibits carnitine palmitoyltransferase 1 and decreases food intake and body weight. Biochemical Pharmacology, 2009, 77, 1084-1095.	4.4	40
64	Ten novelHMGCLmutations in 24 patients of different origin with 3-hydroxy-3-methyl-glutaric aciduria. Human Mutation, 2009, 30, E520-E529.	2.5	21
65	Novel role of FATP1 in mitochondrial fatty acid oxidation in skeletal muscle cells. Journal of Lipid Research, 2009, 50, 1789-1799.	4.2	86
66	CPT1c Is Localized in Endoplasmic Reticulum of Neurons and Has Carnitine Palmitoyltransferase Activity. Journal of Biological Chemistry, 2008, 283, 6878-6885.	3.4	150
67	CPT I overexpression protects L6E9 muscle cells from fatty acid-induced insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E677-E686.	3.5	68
68	Definition by Functional and Structural Analysis of Two Malonyl-CoA Sites in Carnitine Palmitoyltransferase 1A. Journal of Biological Chemistry, 2007, 282, 18212-18224.	3.4	45
69	Novel Effect of C75 on Carnitine Palmitoyltransferase I Activity and Palmitate Oxidation. Biochemistry, 2006, 45, 4339-4350.	2.5	49
70	Mutagenesis of Specific Amino Acids Converts Carnitine Acetyltransferase into Carnitine Palmitoyltransferaseâ€. Biochemistry, 2006, 45, 6133-6141.	2.5	8
71	Alteration of the Malonyl-CoA/Carnitine Palmitoyltransferase I Interaction in the Â-Cell Impairs Glucose-Induced Insulin Secretion. Diabetes, 2005, 54, 462-471.	0.6	75
72	Redesign of Carnitine Acetyltransferase Specificity by Protein Engineering. Journal of Biological Chemistry, 2004, 279, 33899-33908.	3.4	27

#	Article	IF	CITATIONS
73	Structural model of carnitine palmitoyltransferase I based on the carnitine acetyltransferase crystal. Biochemical Journal, 2004, 379, 777-784.	3.7	40
74	Structural (βα)8 TIM Barrel Model of 3-Hydroxy-3-methylglutaryl-Coenzyme A Lyase. Journal of Biological Chemistry, 2003, 278, 29016-29023.	3.4	17
75	Identification of Conserved Amino Acid Residues in Rat Liver Carnitine Palmitoyltransferase I Critical for Malonyl-CoA Inhibition. Journal of Biological Chemistry, 2003, 278, 9058-9063.	3.4	65
76	Structural Model of a Malonyl-CoA-binding Site of Carnitine Octanoyltransferase and Carnitine Palmitoyltransferase I. Journal of Biological Chemistry, 2002, 277, 11473-11480.	3.4	38
77	Adenovirus-mediated overexpression of liver carnitine palmitoyltransferase I in INS1E cells: effects on cell metabolism and insulin secretion. Biochemical Journal, 2002, 364, 219-226.	3.7	72
78	Impaired ketogenesis is a major mechanism for disturbed hepatic fatty acid metabolism in rats with long-term cholestasis and after relief of biliary obstruction. Journal of Hepatology, 2002, 37, 564-571.	3.7	15
79	Developmental Changes in Carnitine Octanoyltransferase Gene Expression in Intestine and Liver of Suckling Rats. Archives of Biochemistry and Biophysics, 2001, 385, 283-289.	3.0	4
80	Modulation in vitro of H-ras oncogene expression by trans-splicing. Oncogene, 2001, 20, 3683-3694.	5.9	6
81	Structural Model of the Catalytic Core of Carnitine Palmitoyltransferase I and Carnitine Octanoyltransferase (COT). Journal of Biological Chemistry, 2001, 276, 45001-45008.	3.4	53
82	Localization of an exonic splicing enhancer responsible for mammalian natural trans-splicing. Nucleic Acids Research, 2001, 29, 3108-3115.	14.5	27
83	Impaired hepatic fatty acid oxidation in rats with short-term cholestasis: characterization and mechanism. Journal of Lipid Research, 2001, 42, 22-30.	4.2	15
84	Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase promoter contains a CREB binding site that regulates cAMP action in Caco-2 cells. Biochemical Journal, 2000, 345, 201.	3.7	4
85	Inhibition by etomoxir of rat liver carnitine octanoyltransferase is produced through the co-ordinate interaction with two histidine residues. Biochemical Journal, 2000, 351, 495.	3.7	7
86	Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase promoter contains a CREB binding site that regulates cAMP action in Caco-2 cells. Biochemical Journal, 2000, 345, 201-206.	3.7	8
87	Inhibition by etomoxir of rat liver carnitine octanoyltransferase is produced through the co-ordinate interaction with two histidine residues. Biochemical Journal, 2000, 351, 495-502.	3.7	12
88	Identification of the two histidine residues responsible for the inhibition by malonyl-CoA in peroxisomal carnitine octanoyltransferase from rat liver. FEBS Letters, 2000, 466, 183-186.	2.8	17
89	Mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase and carnitine palmitoyltransferase II are potential control sites of hepatic ketogenesis under conditions of peroxisome proliferation. Lipids, 1999, 34, S163-S163.	1.7	1
90	Mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase and carnitine palmitoyltransferase II as potential control sites for ketogenesis during mitochondrion and peroxisome proliferation. Biochemical Pharmacology, 1999, 57, 1011-1019.	4.4	30

#	Article	IF	CITATIONS
91	The effect of dexamethasone treatment on the expression of the regulatory genes of ketogenesis in intestine and liver of suckling rats. Molecular and Cellular Biochemistry, 1998, 178, 325-333.	3.1	4
92	Natural trans-splicing in carnitine octanoyltransferase pre-mRNAs in rat liver. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12185-12190.	7.1	130
93	The Effect of Fasting/Refeeding and Insulin Treatment on the Expression of the Regulatory Genes of Ketogenesis in Intestine and Liver of Suckling Rats. Archives of Biochemistry and Biophysics, 1997, 340, 287-298.	3.0	22
94	Developmental Changes in the Phospho(enol)pyruvate Carboxykinase Gene Expression in Small Intestine and Liver of Suckling Rats. Archives of Biochemistry and Biophysics, 1996, 329, 82-86.	3.0	17
95	The Expression of Mitochondrial 3-Hydroxy-3-Methylglutaryl-Coenzyme-A Synthase in Neonatal Rat Intestine and Liver is Under Transcriptional Control. FEBS Journal, 1996, 237, 16-24.	0.2	17
96	Tissue-specific Expression and Dietary Regulation of Chimeric Mitochondrial 3-Hydroxy-3-methylglutaryl Coenzyme A Synthase/Human Growth Hormone Gene in Transgenic Mice. Journal of Biological Chemistry, 1996, 271, 7529-7534.	3.4	9
97	The effect of fasting and insulin treatment on carnitine palmitoyl transferase I and mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase mRNA levels in liver from suckling rats. Biochemical Society Transactions, 1995, 23, 493S-493S.	3.4	11
98	Influence of etomoxir on the expression of several genes in liver, testis and heart. General Pharmacology, 1995, 26, 897-904.	0.7	15
99	The effect of etomoxir on the mRNA levels of enzymes involved in ketogenesis and cholesterogenesis in rat liver. Biochemical Pharmacology, 1994, 47, 1373-1379.	4.4	10
100	Ketogenic Mitochondrial 3-Hydroxy 3-Methylglutaryl-CoA Synthase Gene Expression in Intestine and Liver of Suckling Rats. Archives of Biochemistry and Biophysics, 1993, 301, 445-448.	3.0	43
101	Regulation of Mitochondrial 3-Hydroxy-3-methylglutaryl-coenzyme A Synthase Protein by Starvation, Fat Feeding, and Diabetes. Archives of Biochemistry and Biophysics, 1993, 307, 40-45.	3.0	60