Zhentao Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4758023/publications.pdf Version: 2024-02-01

ΖΗΕΝΤΛΟ \λ/Π

#	Article	IF	CITATIONS
1	Highly efficient preparation of Ce0.8Sm0.2O2-δ–SrCo0.9Nb0.1O3-δ dual-phase four-channel hollow fiber membrane via one-step thermal processing approach. Journal of Membrane Science, 2021, 620, 118752.	4.1	22
2	Integrating Pd-doped perovskite catalysts with ceramic hollow fibre substrate for efficient CO oxidation. Journal of Environmental Chemical Engineering, 2020, 8, 103897.	3.3	13
3	Manganese oxide integrated catalytic ceramic membrane for degradation of organic pollutants using sulfate radicals. Water Research, 2019, 167, 115110.	5.3	165
4	A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage. Applied Energy, 2019, 237, 367-377.	5.1	53
5	Fabrication of lanthanum-based perovskites membranes on porous alumina hollow fibre (AHF) substrates for oxygen enrichment. Ceramics International, 2019, 45, 13086-13093.	2.3	7
6	A new hollow fibre catalytic converter design for sustainable automotive emissions control. Catalysis Communications, 2019, 120, 86-90.	1.6	28
7	Biorefinery of olive leaves to produce dry oleuropein aglycone: Use of homemade ceramic capillary biocatalytic membranes in a multiphase system. Chemical Engineering Science, 2018, 185, 149-156.	1.9	18
8	Heat storage performance analysis and parameter design for encapsulated phase change materials. Energy Conversion and Management, 2018, 157, 619-630.	4.4	26
9	A Review: Research into Organic Surface Treatment of Titanium Dioxide Material. Materials Science Forum, 2018, 914, 193-201.	0.3	3
10	<i>n</i> -Alkanes Phase Change Materials and Their Microencapsulation for Thermal Energy Storage: A Critical Review. Energy & Fuels, 2018, 32, 7262-7293.	2.5	123
11	Producing carbon nanotubes from thermochemical conversion of waste plastics using Ni/ceramic based catalyst. Chemical Engineering Science, 2018, 192, 882-891.	1.9	30
12	X-ray tomography-assisted study of a phase inversion process in ceramic hollow fiber systems – Towards practical structural design. Journal of Membrane Science, 2017, 528, 24-33.	4.1	18
13	Compact hollow fibre reactors for efficient methane conversion. Journal of the European Ceramic Society, 2017, 37, 5281-5287.	2.8	15
14	Morphology, performance and stability of multi-bore capillary La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen transport membranes. Journal of Membrane Science, 2017, 529, 224-233.	4.1	37
15	Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor. Molecules, 2016, 21, 345.	1.7	25
16	In-Situ Catalytic Surface Modification of Micro-Structured La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF) Oxygen Permeable Membrane Using Vacuum-Assisted technique. MATEC Web of Conferences, 2016, 69, 05002.	0.1	1
17	Microâ€structured Bi _{1.5} Y _{0.3} Sm _{0.2} O _{3â^'} <i>_δ</i> catalysts for oxidative coupling of methane. AICHE Journal, 2015, 61, 3451-3458.	1.8	5
18	Microstructured Catalytic Hollow Fiber Reactor for Methane Steam Reforming. Industrial & Engineering Chemistry Research, 2015, 54, 5563-5571.	1.8	9

Zhentao Wu

#	Article	IF	CITATIONS
19	Highly Water-Stable Zirconium Metal–Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination. Journal of the American Chemical Society, 2015, 137, 6999-7002.	6.6	591
20	High-efficiency, nickel-ceramic composite anode current collector for micro-tubular solid oxide fuel cells. Journal of Power Sources, 2015, 280, 446-452.	4.0	20
21	A highly permeable hollow fibre substrate for Pd/Al2O3 composite membranes in hydrogen permeation. International Journal of Hydrogen Energy, 2015, 40, 3249-3258.	3.8	28
22	An oxygen permeable membrane microreactor with an in-situ deposited Bi1.5Y0.3Sm0.2O3â^' catalyst for oxidative coupling of methane. Journal of Membrane Science, 2015, 488, 182-193.	4.1	54
23	A catalytic hollow fibre membrane reactor for combined steam methane reforming and water gas shift reaction. Chemical Engineering Science, 2015, 137, 364-372.	1.9	19
24	Micro-structured alumina multi-channel capillary tubes and monoliths. Journal of Membrane Science, 2015, 489, 64-72.	4.1	34
25	Formation of micro-channels in ceramic membranes – Spatial structure, simulation, and potential use in water treatment. Journal of Membrane Science, 2015, 483, 1-14.	4.1	55
26	Ni/SBA-15 Catalysts for combined steam methane reforming and water gas shift—Prepared for use in catalytic membrane reactors. Applied Catalysis A: General, 2015, 506, 188-196.	2.2	39
27	Co-extrusion of electrolyte/anode functional layer/anode triple-layer ceramic hollow fibres for micro-tubular solid oxide fuel cells–electrochemical performance study. Journal of Power Sources, 2015, 273, 999-1005.	4.0	43
28	Advanced Ceramic Substrate with Ordered and Designed Micro-Structure for Applications in Automotive Catalysis. , 2014, , .		2
29	Electrospun polyurethane-core and gelatin-shell coaxial fibre coatings for miniature implantable biosensors. Biofabrication, 2014, 6, 015002.	3.7	25
30	Micro-structured alumina hollow fibre membranes – Potential applications in wastewater treatment. Journal of Membrane Science, 2014, 461, 39-48.	4.1	65
31	Single-step fabrication and characterisations of triple-layer ceramic hollow fibres for micro-tubular solid oxide fuel cells (SOFCs). Journal of Membrane Science, 2014, 449, 1-8.	4.1	38
32	A dual-structured anode/Ni-mesh current collector hollow fibre forÂmicro-tubular solid oxide fuel cells (SOFCs). Journal of Power Sources, 2014, 251, 145-151.	4.0	35
33	A micro-structured La0.6Sr0.4Co0.2Fe0.8O3â^î´hollow fibre membrane reactor for oxidative coupling of methane. Journal of Membrane Science, 2014, 468, 31-41.	4.1	48
34	Effects of fabrication processes on oxygen permeation of Nb2O5-doped SrCo0.8Fe0.2O3â^'δ micro-tubular membranes. Journal of Membrane Science, 2013, 442, 1-7.	4.1	21
35	A controlled sintering process for more permeable ceramic hollow fibre membranes. Journal of Membrane Science, 2013, 446, 286-293.	4.1	42
36	Bi1.5Y0.3Sm0.2O3-δ-based ceramic hollow fibre membranes for oxygenseparation and chemicalreactions. Journal of Membrane Science, 2013, 432, 58-65.	4.1	13

ZHENTAO WU

#	Article	IF	CITATIONS
37	Tailored fibro-porous structure of electrospun polyurethane membranes, their size-dependent properties and trans-membrane glucose diffusion. Journal of Membrane Science, 2013, 427, 207-217.	4.1	67
38	Novel Catalytic Membrane Micro-reactors for CO2 Capture Via pre-combustion Decarbonization Route. Procedia Engineering, 2012, 44, 1315-1316.	1.2	2
39	Functional Dual-Layer Ceramic Hollow Fibre Membranes for Methane Conversion. Procedia Engineering, 2012, 44, 1484-1485.	1.2	3
40	Effects of separation layer thickness on oxygen permeation and mechanical strength of DL-HFMR-ScSZ. Journal of Membrane Science, 2012, 415-416, 229-236.	4.1	6
41	Electrochemical promotion of a Pt catalyst supported on La0.6Sr0.4Co0.2Fe0.8O3â^î^ hollow fibre membranes. Solid State Ionics, 2012, 225, 382-385.	1.3	11
42	Dual-layer hollow fibres with different anode structures for micro-tubular solid oxide fuel cells. Journal of Power Sources, 2012, 205, 272-280.	4.0	56
43	Highâ€Performance, Anodeâ€6upported, Microtubular SOFC Prepared from Singleâ€6tepâ€Fabricated, Dual‣ayer Hollow Fibers. Advanced Materials, 2011, 23, 2480-2483.	11.1	118
44	NI/NI‥SZ Current Collector/Anode Dual Layer Hollow Fibers for Microâ€Tubular Solid Oxide Fuel Cells. Fuel Cells, 2011, 11, 690-696.	1.5	10
45	Pd/Al2O3 composite hollow fibre membranes: Effect of substrate resistances on H2 permeation properties. Chemical Engineering Science, 2011, 66, 1150-1158.	1.9	25
46	A dual layer Ni/Ni-YSZ hollow fibre for micro-tubular SOFC anode support with a current collector. Electrochemistry Communications, 2011, 13, 93-95.	2.3	16
47	Functional LSM–ScSZ/NiO–ScSZ dual-layer hollow fibres for partial oxidation of methane. International Journal of Hydrogen Energy, 2011, 36, 5334-5341.	3.8	22
48	Novel fabrication technique of hollow fibre support for micro-tubular solid oxide fuel cells. Journal of Power Sources, 2011, 196, 5035-5044.	4.0	31
49	Morphological studies of macrostructure of Ni–CGO anode hollow fibres for intermediate temperature solid oxide fuel cells. Journal of Membrane Science, 2010, 360, 410-417.	4.1	73
50	Electrolyte thickness control and its effect on electrolyte/anode dual-layer hollow fibres for micro-tubular solid oxide fuel cells. Journal of Membrane Science, 2010, 365, 382-388.	4.1	37
51	Single-step fabrication and characterisations of electrolyte/anode dual-layer hollow fibres for micro-tubular solid oxide fuel cells. Journal of Membrane Science, 2010, 351, 196-204.	4.1	86
52	A novel dual-layer ceramic hollow fibre membrane reactor for methane conversion. Journal of Membrane Science, 2010, 352, 63-70.	4.1	63
53	A morphological study of ceramic hollow fibre membranes: A perspective on multifunctional catalytic membrane reactors. Catalysis Today, 2010, 156, 306-315.	2.2	83
54	A multifunctional Pd/alumina hollow fibre membrane reactor for propane dehydrogenation. Catalysis Today, 2010, 156, 93-99.	2.2	47

Zhentao Wu

#	Article	IF	CITATIONS
55	Microstructure and Performance Investigation of a Solid Oxide Fuel Cells Based on Highly Asymmetric YSZ Microtubular Electrolytes. Industrial & Engineering Chemistry Research, 2010, 49, 6062-6068.	1.8	11
56	A novel inorganic hollow fiber membrane reactor for catalytic dehydrogenation of propane. AICHE Journal, 2009, 55, 2389-2398.	1.8	30
57	A novel phase transition technique for fabrication of mesopore sized ceramic membranes. Journal of Membrane Science, 2009, 339, 5-9.	4.1	9
58	Novel co-extruded electrolyte–anode hollow fibres for solid oxide fuel cells. Electrochemistry Communications, 2009, 11, 1799-1802.	2.3	50
59	Stabilities of La0.6Sr0.4Co0.2Fe0.8O3â^î́r oxygen separation membranes—Effects of kinetic demixing/decomposition and impurity segregation. Journal of Membrane Science, 2009, 344, 101-106.	4.1	40
60	Combination of a Two-Zone Fluidized Bed Reactor with a Pd hollow fibre membrane for catalytic alkane dehydrogenation. Chemical Engineering Journal, 2009, 155, 298-303.	6.6	46
61	Carbon dioxide stripping in ceramic hollow fibre membrane contactors. Chemical Engineering Science, 2009, 64, 1-8.	1.9	128
62	Fabrication of ultrathin La0.6Sr0.4Co0.2Fe0.8O3– hollow fibre membranes for oxygen permeation. Chemical Engineering Science, 2009, 64, 4383-4388.	1.9	68
63	Solvent distillation by ceramic hollow fibre membrane contactors. Journal of Membrane Science, 2008, 314, 58-66.	4.1	28
64	One-Step Synthesis and Characterization of La2NiO4+ÎMixed-Conductive Oxide for Oxygen Permeation. Industrial & Engineering Chemistry Research, 2007, 46, 6910-6915.	1.8	24
65	A dense oxygen separation membrane deriving from nanosized mixed conducting oxide. Journal of Membrane Science, 2007, 291, 172-179.	4.1	12
66	Contribution of the Surface Reactions to the Overall Oxygen Permeation of the Mixed Conducting Membranes. Industrial & Engineering Chemistry Research, 2006, 45, 2824-2829.	1.8	17
67	Oxygen permeability and stability of Al2O3-doped SrCo0.8Fe0.2O3â^î^´mixed conducting oxides. Journal of Membrane Science, 2006, 279, 320-327.	4.1	49
68	Effect of pH on synthesis and properties of perovskite oxide via a citrate process. AICHE Journal, 2006, 52, 769-776.	1.8	22
69	Effect of the Packing Amount of Catalysts on the Partial Oxidation of Methane Reaction in a Dense Oxygen-Permeable Membrane Reactor. Industrial & Engineering Chemistry Research, 2005, 44, 1954-1959.	1.8	18
70	Structure and Oxygen Permeability of BaCo0.4Fe0.6-xZrxO3-δOxide:  Effect of the Synthesis Method. Industrial & Engineering Chemistry Research, 2004, 43, 2747-2752.	1.8	9