
Tobias Scharnweber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4757412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperature drives variation in flying insect biomass across a German malaise trap network. Insect Conservation and Diversity, 2022, 15, 168-180.	3.0	26
2	Limitation by vapour pressure deficit shapes different intraâ€annual growth patterns of diffuse―and ringâ€porous temperate broadleaves. New Phytologist, 2022, 233, 2429-2441.	7.3	19
3	The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature Communications, 2022, 13, 28.	12.8	66
4	Climate-change-driven growth decline of European beech forests. Communications Biology, 2022, 5, 163.	4.4	89
5	Jet stream position explains regional anomalies in European beech forest productivity and tree growth. Nature Communications, 2022, 13, 2015.	12.8	8
6	Divergent responses to permafrost and precipitation reveal mechanisms for the spatial variation of two sympatric spruce. Ecosphere, 2021, 12, e03622.	2.2	12
7	Climate sensitivity and drought seasonality determine post-drought growth recovery of Quercus petraea and Quercus robur in Europe. Science of the Total Environment, 2021, 784, 147222.	8.0	61
8	Growth and Wood Trait Relationships of Alnus glutinosa in Peatland Forest Stands With Contrasting Water Regimes. Frontiers in Plant Science, 2021, 12, 788106.	3.6	3
9	Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Global Change Biology, 2020, 26, 2505-2518.	9.5	101
10	A Unifying Concept for Growth Trends of Trees and Forests – The "Potential Natural Forestâ€. Frontiers in Forests and Global Change, 2020, 3, .	2.3	10
11	Global assessment of relationships between climate and tree growth. Global Change Biology, 2020, 26, 3212-3220.	9.5	104
12	Reduced above-ground growth and wood density but increased wood chemical concentrations of Scots pine on relict charcoal hearths. Science of the Total Environment, 2020, 717, 137189.	8.0	16
13	Tree growth at the end of the 21st century - the extreme years 2018/19 as template for future growth conditions. Environmental Research Letters, 2020, 15, 074022.	5.2	37
14	Using Annual Resolution Pollen Analysis to Synchronize Varve and Tree-Ring Records. Quaternary, 2019, 2, 23.	2.0	5
15	Scientific Merits and Analytical Challenges of Treeâ€Ring Densitometry. Reviews of Geophysics, 2019, 57, 1224-1264.	23.0	98
16	Combining Dendrometer Series and Xylogenesis Imagery—DevX, a Simple Visualization Tool to Explore Plant Secondary Growth Phenology. Frontiers in Forests and Global Change, 2019, 2, .	2.3	17
17	Removing the no-analogue bias in modern accelerated tree growth leads to stronger medieval drought. Scientific Reports, 2019, 9, 2509.	3.3	18
18	Confessions of solitary oaks: We grow fast but we fear the drought. Dendrochronologia, 2019, 55, 43-49.	2.2	5

TOBIAS SCHARNWEBER

#	Article	IF	CITATIONS
19	Size matters—a comparison of three methods to assess age- and size-dependent climate sensitivity of trees. Trees - Structure and Function, 2019, 33, 183-192.	1.9	54
20	A submerged pine forest from the early Holocene in the Mecklenburg Lake District, northern Germany. Boreas, 2018, 47, 910-925.	2.4	9
21	Distinct growth phenology but similar daily stem dynamics in three co-occurring broadleaved tree species. Tree Physiology, 2018, 38, 1820-1828.	3.1	50
22	Different maximum latewood density and blue intensity measurements techniques reveal similar results. Dendrochronologia, 2018, 49, 94-101.	2.2	36
23	An 810â€year history of cold season temperature variability for northern Poland. Boreas, 2018, 47, 443-453.	2.4	18
24	Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecology Letters, 2018, 21, 1833-1844.	6.4	92
25	Variability of soil carbon stocks in a mixed deciduous forest on hydromorphic soils. Geoderma, 2017, 307, 8-18.	5.1	15
26	Reconciling the community with a concept—The uniformitarian principle in the dendro-sciences. Dendrochronologia, 2017, 44, 211-214.	2.2	17
27	Common trends in elements? Within- and between-tree variations of wood-chemistry measured by X-ray fluorescence — A dendrochemical study. Science of the Total Environment, 2016, 566-567, 1245-1253.	8.0	44
28	Drought sensitivity of beech on a shallow chalk soil in northeastern Germany – a comparative study. Forest Ecosystems, 2016, 3, .	3.1	14
29	Impact of climate change on tree-ring growth of Scots pine, common beech and pedunculate oak in northeastern Germany. IForest, 2016, 9, 1-11.	1.4	30
30	Can We Use Tree Rings of Black Alder to Reconstruct Lake Levels? A Case Study for the Mecklenburg Lake District, Northeastern Germany. PLoS ONE, 2015, 10, e0137054.	2.5	7
31	New insights for the interpretation of ancient bog oak chronologies? Reactions of oak (Quercus) Tj ETQq1 1 0.78 417, 534-543.	34314 rgBT 2.3	Överlock 1 19
32	Differential radial growth patterns between beech (Fagus sylvatica L.) and oak (Quercus robur L.) on periodically waterlogged soils. Tree Physiology, 2013, 33, 425-437.	3.1	46
33	Drought matters – Declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecology and Management, 2011, 262, 947-961.	3.2	229