Tobias Scharnweber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4757412/publications.pdf

Version: 2024-02-01

33 papers

1,377 citations

430874 18 h-index 33 g-index

35 all docs 35 docs citations

35 times ranked 1652 citing authors

#	Article	IF	CITATIONS
1	Drought matters – Declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecology and Management, 2011, 262, 947-961.	3.2	229
2	Global assessment of relationships between climate and tree growth. Global Change Biology, 2020, 26, 3212-3220.	9.5	104
3	Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Global Change Biology, 2020, 26, 2505-2518.	9.5	101
4	Scientific Merits and Analytical Challenges of Treeâ€Ring Densitometry. Reviews of Geophysics, 2019, 57, 1224-1264.	23.0	98
5	Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecology Letters, 2018, 21, 1833-1844.	6.4	92
6	Climate-change-driven growth decline of European beech forests. Communications Biology, 2022, 5, 163.	4.4	89
7	The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature Communications, 2022, 13, 28.	12.8	66
8	Climate sensitivity and drought seasonality determine post-drought growth recovery of Quercus petraea and Quercus robur in Europe. Science of the Total Environment, 2021, 784, 147222.	8.0	61
9	Size matters—a comparison of three methods to assess age- and size-dependent climate sensitivity of trees. Trees - Structure and Function, 2019, 33, 183-192.	1.9	54
10	Distinct growth phenology but similar daily stem dynamics in three co-occurring broadleaved tree species. Tree Physiology, 2018, 38, 1820-1828.	3.1	50
11	Differential radial growth patterns between beech (Fagus sylvatica L.) and oak (Quercus robur L.) on periodically waterlogged soils. Tree Physiology, 2013, 33, 425-437.	3.1	46
12	Common trends in elements? Within- and between-tree variations of wood-chemistry measured by X-ray fluorescence — A dendrochemical study. Science of the Total Environment, 2016, 566-567, 1245-1253.	8.0	44
13	Tree growth at the end of the 21st century - the extreme years 2018/19 as template for future growth conditions. Environmental Research Letters, 2020, 15, 074022.	5.2	37
14	Different maximum latewood density and blue intensity measurements techniques reveal similar results. Dendrochronologia, 2018, 49, 94-101.	2.2	36
15	Impact of climate change on tree-ring growth of Scots pine, common beech and pedunculate oak in northeastern Germany. IForest, 2016, 9, 1-11.	1.4	30
16	Temperature drives variation in flying insect biomass across a German malaise trap network. Insect Conservation and Diversity, 2022, 15, 168-180.	3.0	26
17	New insights for the interpretation of ancient bog oak chronologies? Reactions of oak (Quercus) Tj ETQq1 1 0.78 417, 534-543.	84314 rgBT 2.3	Γ /Overlock 1 19
18	Limitation by vapour pressure deficit shapes different intraâ€annual growth patterns of diffuse―and ringâ€porous temperate broadleaves. New Phytologist, 2022, 233, 2429-2441.	7.3	19

#	Article	IF	CITATIONS
19	An 810â€year history of cold season temperature variability for northern Poland. Boreas, 2018, 47, 443-453.	2.4	18
20	Removing the no-analogue bias in modern accelerated tree growth leads to stronger medieval drought. Scientific Reports, 2019, 9, 2509.	3.3	18
21	Reconciling the community with a concept—The uniformitarian principle in the dendro-sciences. Dendrochronologia, 2017, 44, 211-214.	2.2	17
22	Combining Dendrometer Series and Xylogenesis Imageryâ€"DevX, a Simple Visualization Tool to Explore Plant Secondary Growth Phenology. Frontiers in Forests and Global Change, 2019, 2, .	2.3	17
23	Reduced above-ground growth and wood density but increased wood chemical concentrations of Scots pine on relict charcoal hearths. Science of the Total Environment, 2020, 717, 137189.	8.0	16
24	Variability of soil carbon stocks in a mixed deciduous forest on hydromorphic soils. Geoderma, 2017, 307, 8-18.	5.1	15
25	Drought sensitivity of beech on a shallow chalk soil in northeastern Germany – a comparative study. Forest Ecosystems, 2016, 3, .	3.1	14
26	Divergent responses to permafrost and precipitation reveal mechanisms for the spatial variation of two sympatric spruce. Ecosphere, 2021, 12, e03622.	2.2	12
27	A Unifying Concept for Growth Trends of Trees and Forests – The "Potential Natural Forest― Frontiers in Forests and Global Change, 2020, 3, .	2.3	10
28	A submerged pine forest from the early Holocene in the Mecklenburg Lake District, northern Germany. Boreas, 2018, 47, 910-925.	2.4	9
29	Jet stream position explains regional anomalies in European beech forest productivity and tree growth. Nature Communications, 2022, 13, 2015.	12.8	8
30	Can We Use Tree Rings of Black Alder to Reconstruct Lake Levels? A Case Study for the Mecklenburg Lake District, Northeastern Germany. PLoS ONE, 2015, 10, e0137054.	2.5	7
31	Using Annual Resolution Pollen Analysis to Synchronize Varve and Tree-Ring Records. Quaternary, 2019, 2, 23.	2.0	5
32	Confessions of solitary oaks: We grow fast but we fear the drought. Dendrochronologia, 2019, 55, 43-49.	2.2	5
33	Growth and Wood Trait Relationships of Alnus glutinosa in Peatland Forest Stands With Contrasting Water Regimes. Frontiers in Plant Science, 2021, 12, 788106.	3.6	3