

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4757371/publications.pdf Version: 2024-02-01

Donch

#	Article	IF	CITATION
1	Ultrasound-assisted extraction of oil from flaxseed. Separation and Purification Technology, 2008, 62, 192-198.	3.9	314
2	Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydrate Polymers, 2014, 102, 136-143.	5.1	185
3	Optimization of ethanol–water extraction of lignans from flaxseed. Separation and Purification Technology, 2007, 57, 17-24.	3.9	177
4	Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: Influence of various process parameters on particle size and stability. Carbohydrate Polymers, 2011, 83, 1604-1610.	5.1	172
5	Preparation and characterization of starch crosslinked with sodium trimetaphosphate and hydrolyzed by enzymes. Carbohydrate Polymers, 2014, 103, 310-318.	5.1	131
6	Preparation and characterization of nanocomposite films containing starch and cellulose nanofibers. Industrial Crops and Products, 2018, 123, 654-660.	2.5	115
7	Effect of gum Arabic on stability of oil-in-water emulsion stabilized by flaxseed and soybean protein. Carbohydrate Polymers, 2011, 86, 343-351.	5.1	110
8	Characterization of starch films containing starch nanoparticles. Carbohydrate Polymers, 2013, 96, 593-601.	5.1	108
9	Effect of high-pressure homogenization on the structure and thermal properties of maize starch. Journal of Food Engineering, 2008, 87, 436-444.	2.7	96
10	Effects of drying methods on rheological properties of flaxseed gum. Carbohydrate Polymers, 2009, 78, 213-219.	5.1	96
11	Rheological properties of waxy maize starch and xanthan gum mixtures in the presence of sucrose. Carbohydrate Polymers, 2009, 77, 472-481.	5.1	95
12	Preparation of crosslinked starch microspheres and their drug loading and releasing properties. Carbohydrate Polymers, 2008, 74, 379-384.	5.1	91
13	Effects of high-pressure homogenization on the properties of starch-plasticizer dispersions and their films. Carbohydrate Polymers, 2011, 86, 202-207.	5.1	86
14	Effects of drying methods on the functional properties of flaxseed gum powders. Carbohydrate Polymers, 2010, 81, 128-133.	5.1	84
15	Effect of concentrated flaxseed protein on the stability and rheological properties of soybean oil-in-water emulsions. Journal of Food Engineering, 2010, 96, 555-561.	2.7	83
16	The effect of addition of flaxseed gum on the emulsion properties of soybean protein isolate (SPI). Journal of Food Engineering, 2011, 104, 56-62.	2.7	80
17	Effects of partial gelatinization on structure and thermal properties of corn starch after spray drying. Carbohydrate Polymers, 2012, 88, 1319-1325.	5.1	78
18	Effect of gums on the rheological characteristics and microstructure of acid-induced SPI-gum mixed gels. Carbohydrate Polymers, 2014, 108, 183-191.	5.1	76

#	Article	IF	CITATIONS
19	Effect of partially gelatinized corn starch on the rheological properties of wheat dough. LWT - Food Science and Technology, 2016, 66, 324-331.	2.5	73
20	Effect of flaxseed gum addition on rheological properties of native maize starch. Journal of Food Engineering, 2008, 89, 87-92.	2.7	72
21	Physical properties and loading capacity of starch-based microparticles crosslinked with trisodium trimetaphosphate. Journal of Food Engineering, 2009, 92, 255-260.	2.7	72
22	Effects of superfine grinding on properties of sugar beet pulp powders. LWT - Food Science and Technology, 2018, 87, 203-209.	2.5	64
23	Development of soy protein isolate emulsion gels as extrusion-based 3D food printing inks: Effect of polysaccharides incorporation. Food Hydrocolloids, 2022, 131, 107824.	5.6	64
24	Effect of high shear homogenization on rheology, microstructure and fractal dimension of acid-induced SPI gels. Journal of Food Engineering, 2014, 126, 48-55.	2.7	63
25	Effect of High-Pressure Homogenization on the Structure of Cassava Starch. International Journal of Food Properties, 2007, 10, 911-922.	1.3	59
26	Micronization and Hydrophobic Modification of Cassava Starch. International Journal of Food Properties, 2007, 10, 527-536.	1.3	58
27	Viscoelastic properties and fractal analysis of acid-induced SPI gels at different ionic strength. Carbohydrate Polymers, 2013, 92, 98-105.	5.1	58
28	Characteristics of Flaxseed Oil from Two Different Flax Plants. International Journal of Food Properties, 2011, 14, 1286-1296.	1.3	57
29	Creep behavior of starch-based nanocomposite films with cellulose nanofibrils. Carbohydrate Polymers, 2015, 117, 957-963.	5.1	57
30	Mechanical properties of polyurethane foams prepared from liquefied corn stover with PAPI. Bioresource Technology, 2008, 99, 2265-2268.	4.8	56
31	Characterization of pectin extracted from sugar beet pulp under different drying conditions. Journal of Food Engineering, 2017, 211, 1-6.	2.7	56
32	Optimization of production yield and functional properties of pectin extracted from sugar beet pulp. Carbohydrate Polymers, 2013, 95, 233-240.	5.1	55
33	Effects of high pressure homogenization on rheological properties of flaxseed gum. Carbohydrate Polymers, 2011, 83, 489-494.	5.1	54
34	Effect of high-pressure homogenization on microstructure and rheological properties of alkali-treated high-amylose maize starch. Journal of Food Engineering, 2012, 113, 61-68.	2.7	53
35	The effect of annealing and cryoprotectants on the properties of vacuum-freeze dried starch nanoparticles. Carbohydrate Polymers, 2012, 88, 1334-1341.	5.1	52
36	Starch pastes thinning during high-pressure homogenization. Carbohydrate Polymers, 2009, 75, 32-38.	5.1	51

#	Article	IF	CITATIONS
37	Fabrication of starch-based microparticles by an emulsification-crosslinking method. Journal of Food Engineering, 2009, 92, 250-254.	2.7	51
38	Characterization of starch films containing starch nanoparticles. Part 2: Viscoelasticity and creep properties. Carbohydrate Polymers, 2013, 96, 602-610.	5.1	51
39	Antioxidative Activity of Douchi (A Chinese Traditional Salt-Fermented Soybean Food) Extracts During Its Processing. International Journal of Food Properties, 2007, 10, 385-396.	1.3	50
40	Rheological properties of dilute aqueous solutions of cassava starch. Carbohydrate Polymers, 2008, 74, 385-389.	5.1	50
41	Effects of Ball Milling Processes on the Microstructure and Rheological Properties of Microcrystalline Cellulose as a Sustainable Polymer Additive. Materials, 2018, 11, 1057.	1.3	49
42	Ability of flaxseed and soybean protein concentrates to stabilize oil-in-water emulsions. Journal of Food Engineering, 2010, 100, 417-426.	2.7	48
43	Extrusion detoxification technique on flaxseed by uniform design optimization. Separation and Purification Technology, 2008, 61, 51-59.	3.9	47
44	Recent development of microwave fluidization technology for drying of fresh fruits and vegetables. Trends in Food Science and Technology, 2019, 86, 59-67.	7.8	46
45	Influence of microwave hot-air flow rolling dry-blanching on microstructure, water migration and quality of pleurotus eryngii during hot-air drying. Food Control, 2020, 114, 107228.	2.8	46
46	Rheological properties of extruded dispersions of flaxseed-maize blend. Journal of Food Engineering, 2010, 98, 480-491.	2.7	45
47	Morphological properties and thermoanalysis of micronized cassava starch. Carbohydrate Polymers, 2010, 79, 101-105.	5.1	44
48	Process development for scum to biodiesel conversion. Bioresource Technology, 2015, 185, 185-193.	4.8	44
49	Effect of particle size of sugar beet pulp on the extraction and property of pectin. Journal of Food Engineering, 2018, 218, 44-49.	2.7	43
50	Effect of flaxseed gum on the rheological properties of peanut protein isolate dispersions and gels. LWT - Food Science and Technology, 2016, 74, 528-533.	2.5	42
51	Effect of LBG on the gel properties of acid-induced SPI gels. LWT - Food Science and Technology, 2017, 75, 1-8.	2.5	42
52	TEMPO-oxidized cellulose fibers from wheat straw: Effect of ultrasonic pretreatment and concentration on structure and rheological properties of suspensions. Carbohydrate Polymers, 2021, 255, 117386.	5.1	42
53	A comparison of dynamic mechanical properties of processing-tomato peel as affected by hot lye and infrared radiation heating for peeling. Journal of Food Engineering, 2014, 126, 27-34.	2.7	41
54	Heat-moisture treatment and acid hydrolysis of corn starch in different sequences. LWT - Food Science and Technology, 2017, 79, 11-20.	2.5	41

#	Article	IF	CITATIONS
55	Effect of different drying techniques on drying kinetics, nutritional components, antioxidant capacity, physical properties and microstructure of edamame. Food Chemistry, 2022, 373, 131412.	4.2	41
56	A novel method to improve heating uniformity in mid-high moisture potato starch with radio frequency assisted treatment. Journal of Food Engineering, 2017, 206, 23-36.	2.7	40
57	Rheological properties and microstructure of a novel starch-based emulsion gel produced by one-step emulsion gelation: Effect of oil content. Carbohydrate Polymers, 2022, 281, 119061.	5.1	40
58	Preparation and characterization of crosslinked starch microspheres using a two-stage water-in-water emulsion method. Carbohydrate Polymers, 2012, 88, 912-916.	5.1	38
59	Optimization of extrusion of flaxseeds for in vitro protein digestibility analysis using response surface methodology. Journal of Food Engineering, 2008, 85, 59-64.	2.7	37
60	Rheological property of extruded and enzyme treated flaxseed mucilage. Carbohydrate Polymers, 2010, 80, 460-466.	5.1	36
61	Characterization of non-linear rheological behavior of SPI–FG dispersions using LAOS tests and FT rheology. Carbohydrate Polymers, 2013, 92, 1151-1158.	5.1	35
62	Effect of alkaline and high-pressure homogenization on the extraction of phenolic acids from potato peels. Innovative Food Science and Emerging Technologies, 2016, 37, 91-97.	2.7	35
63	The effect of addition of flaxseed gum on the rheological behavior of mixed flaxseed gum–casein gels. Carbohydrate Polymers, 2012, 88, 1214-1220.	5.1	34
64	Rheological study and fractal analysis of flaxseed gum gels. Carbohydrate Polymers, 2011, 86, 594-599.	5.1	31
65	Rheological properties of suspensions containing cross-linked starch nanoparticles prepared by spray and vacuum freeze drying methods. Carbohydrate Polymers, 2012, 90, 1732-1738.	5.1	31
66	Application of Various Drying Methods to Produce Enzymatically Hydrolyzed Porous Starch Granules. Drying Technology, 2013, 31, 1627-1634.	1.7	31
67	Effect of Moisture Content on the Physical Properties of Fibered Flaxseed. International Journal of Food Engineering, 2007, 3, .	0.7	30
68	Dynamic viscoelastic properties of sweet potato studied by dynamic mechanical analyzer. Carbohydrate Polymers, 2010, 79, 520-525.	5.1	29
69	Heating effect on the DSC melting curve of flaxseed oil. Journal of Thermal Analysis and Calorimetry, 2014, 115, 2129-2135.	2.0	29
70	Rheological behavior of nanocellulose gels at various calcium chloride concentrations. Carbohydrate Polymers, 2021, 274, 118660.	5.1	29
71	Freeze-thaw and ultrasound pretreatment before microwave combined drying affects drying kinetics, cell structure and quality parameters of Platycodon grandiflorum. Industrial Crops and Products, 2021, 164, 113391.	2.5	28
72	Anti-thixotropic properties of waxy maize starch dispersions with different pasting conditions. Carbohydrate Polymers, 2010, 79, 1130-1139.	5.1	27

#	Article	IF	Citations
73	Dynamic mechanical properties of flaxseed gum based edible films. Carbohydrate Polymers, 2011, 86, 499-504.	5.1	27

Effect of high-pressure homogenization on the extraction of sulforaphane from broccoli (Brassica) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 $\frac{27}{27}$

75	Effect of sucrose on dynamic mechanical characteristics of maize and potato starch films. Carbohydrate Polymers, 2009, 76, 239-243.	5.1	26
76	Temperature thresholds and time-temperature dependence of gelatinization for heat-moisture treated corn starch. Journal of Food Engineering, 2018, 217, 43-49.	2.7	26
77	Effects of high-pressure homogenization on physical and thermal properties of citrus fiber. LWT - Food Science and Technology, 2019, 116, 108573.	2.5	25
78	Shear-thickening properties of waxy maize starch dispersions. Journal of Food Engineering, 2011, 107, 415-423.	2.7	24
79	Suspensions of vacuum-freeze dried starch nanoparticles: Influence of NaCl on their rheological properties. Carbohydrate Polymers, 2013, 94, 782-790.	5.1	24
80	Isolation and Characterization of Corncob Cellulose Fibers using Microwave-Assisted Chemical Treatments. International Journal of Food Engineering, 2014, 10, 427-436.	0.7	24
81	The synergistic effect of rumen cellulolytic bacteria and activated carbon on thermophilic digestion of cornstalk. Bioresource Technology, 2021, 338, 125566.	4.8	24
82	A Review of Micro Wind Turbines in the Built Environment. , 2010, , .		23
83	Preparation of gelatin microparticles using water-in-water (w/w) emulsification technique. Journal of Food Engineering, 2011, 103, 9-13.	2.7	23
84	Effects of CS/EC ratio on structure and properties of polyurethane foams prepared from untreated liquefied corn stover with PAPI. Chemical Engineering Research and Design, 2008, 86, 416-421.	2.7	22
85	Spray drying of starch submicron particles prepared by high pressure homogenization and mini-emulsion cross-linking. Journal of Food Engineering, 2012, 113, 399-407.	2.7	22
86	The rheological behavior of native and high-pressure homogenized waxy maize starch pastes. Carbohydrate Polymers, 2012, 88, 481-489.	5.1	22
87	Viscoelastic behavior of maize kernel studied by dynamic mechanical analyzer. Carbohydrate Polymers, 2014, 112, 350-358.	5.1	21
88	Radio frequency heating uniformity evaluation for mid-high moisture food treated with cylindrical electromagnetic wave conductors. Innovative Food Science and Emerging Technologies, 2018, 47, 56-70.	2.7	21
89	Dynamic mechanical properties and fractal analysis of texturized soybean protein/wheat gluten composite produced by high moisture extrusion. International Journal of Food Science and Technology, 2019, 54, 499-508.	1.3	21
90	Effect of water content on thermal behaviors of common buckwheat flour and starch. Journal of Food Engineering, 2009, 93, 242-248.	2.7	20

#	Article	IF	CITATIONS
91	Effect of flaxseed meal on the dynamic mechanical properties of starch-based films. Journal of Food Engineering, 2013, 118, 365-370.	2.7	20
92	Drying characteristics and water dynamics during microwave hot-air flow rolling drying of <i>Pleurotus eryngii</i> . Drying Technology, 2020, 38, 1493-1504.	1.7	20
93	Effects of intermittent radio frequency drying on structure and gelatinization properties of native potato flour. Food Research International, 2021, 139, 109807.	2.9	20
94	Influence of alfalfa powder concentration and granularity on rheological properties of alfalfa-wheat dough. Journal of Food Engineering, 2008, 89, 137-141.	2.7	19
95	The effect of NaCl on the rheological properties of suspension containing spray dried starch nanoparticles. Carbohydrate Polymers, 2012, 90, 1530-1537.	5.1	19
96	Relationship between biphasic endotherms and multi-stage gelatinization of corn starch in excess water. LWT - Food Science and Technology, 2017, 81, 335-342.	2.5	19
97	Microstructure Analysis of Rice Kernel. International Journal of Food Properties, 2007, 10, 85-91.	1.3	17
98	Preparation and Characterization of High Amylose Corn Starch–Microcrystalline Cellulose Aerogel with High Absorption. Materials, 2019, 12, 1420.	1.3	17
99	Biodegradation behavior and digestive properties of starch-based film for food packaging – a review. Critical Reviews in Food Science and Nutrition, 2023, 63, 6923-6945.	5.4	17
100	Effect of high-pressure homogenization on the rheology, microstructure and fractal dimension of citrus fiber-oil dispersions. Journal of Food Engineering, 2020, 277, 109899.	2.7	16
101	Effect of high-pressure homogenization on rheological properties of citrus fiber. LWT - Food Science and Technology, 2020, 127, 109366.	2.5	16
102	Insight into the biphasic transition of heat-moisture treated waxy maize starch through controlled gelatinization. Food Chemistry, 2021, 341, 128214.	4.2	16
103	Optimization of Supercritical Carbon Dioxide Extraction of Flaxseed Oil Using Response Surface Methodology. International Journal of Food Engineering, 2008, 4, .	0.7	15
104	Convective Drying Kinetics of Single Droplets of Aqueous Glucose. Drying Technology, 2012, 30, 1029-1036.	1.7	15
105	Effect of highâ€pressure homogenization on the flow properties of citrus peel fibers. Journal of Food Process Engineering, 2018, 41, e12659.	1.5	15
106	Dynamic rheological properties of peanut protein isolate and aggregation suspension and acid-induced gel. Powder Technology, 2019, 358, 95-102.	2.1	15
107	Value-added application of Platycodon grandiflorus (Jacq.) A.DC. roots (PGR) by ultrasound-assisted extraction (UAE) process to improve physicochemical quality, structural characteristics and functional properties. Food Chemistry, 2021, 363, 130354.	4.2	15
108	Effect and Mechanism of Acid-Induced Soy Protein Isolate Gels as Influenced by Cellulose Nanocrystals and Microcrystalline Cellulose. Foods, 2022, 11, 461.	1.9	15

#	Article	IF	CITATIONS
109	Effects of κ-Carrageenan and Guar Gum on the Rheological Properties and Microstructure of Phycocyanin Gel. Foods, 2022, 11, 734.	1.9	15
110	Influences of Microemulsion Cross-linking Reaction and Ball-milling on Particle Size Characteristics of Potato and Maize Starches. International Journal of Food Engineering, 2006, 2, .	0.7	14
111	Fractal Modeling and Simulation of the Developing Process of Stress Cracks in Corn Kernel. Drying Technology, 2004, 22, 59-69.	1.7	12
112	Effects of potato starch addition and cooling rate on rheological characteristics of flaxseed protein concentrate. Journal of Food Engineering, 2009, 91, 392-401.	2.7	12
113	Rheological and Microstructural Characteristics of Thermally Produced Flaxseed Gum–Whey Protein Isolate Mixed Solutions and Gels. Drying Technology, 2013, 31, 1635-1642.	1.7	12
114	Multiple endothermic transitions of acid hydrolyzed and heat-moisture treated corn starch. LWT - Food Science and Technology, 2017, 81, 195-201.	2.5	12
115	Effect on parboiling processing on structure and thermal properties of highland barley flours. Powder Technology, 2020, 364, 145-151.	2.1	12
116	Effects of carboxymethyl cellulose/pectin coating combined with ultrasound pretreatment before drying on quality of turmeric (Curcuma longa L.). International Journal of Biological Macromolecules, 2022, 202, 354-365.	3.6	12
117	Physical and Viscoelastic Properties of Different Moisture Content Highland Barley Kernels. International Journal of Food Engineering, 2017, 13, .	0.7	11
118	Thermal Properties of Polyurethane Films Prepared from Mixed Cellulose, Hemicelluloses and Lignin. International Journal of Food Engineering, 2012, 8, .	0.7	10
119	The Adsorption and Release Characteristics of CPFX in Porous Starch Produced Through Different Drying Methods. Drying Technology, 2013, 31, 1592-1599.	1.7	10
120	The Stress-Relaxation Behavior of Rice as a Function of Time, Moisture and Temperature. International Journal of Food Engineering, 2017, 13, .	0.7	10
121	Effect of hydrothermal treatment on linear and nonlinear rheological properties of highland barley gels. LWT - Food Science and Technology, 2020, 119, 108868.	2.5	10
122	Dehydration characteristics and evolution of physicochemical properties of Platycodon grandiflorum (Jacq. A.DC.) roots (PGR) during pulse-spouted microwave vacuum drying (PSMVD). Industrial Crops and Products, 2022, 177, 114449.	2.5	10
123	The effect of dry heat parboiling processing on the short-range molecular order structure of highland barley. LWT - Food Science and Technology, 2021, 140, 110797.	2.5	9
124	Analysis of Adhesion between Wet Clay Soil and Rotary Tillage Part in Paddy Field Based on Discrete Element Method. Processes, 2021, 9, 845.	1.3	9
125	Experimental study on the hygrothermal dynamics of peanut (<i>Arachis hypogaea</i> Linn.) in the process of superposition and variable temperature drying. Drying Technology, 2022, 40, 1463-1477.	1.7	9
126	Synthesis of Carboxymethyl Flaxseed Gum and Study of Nonlinear Rheological Properties of Its Solutions. International Journal of Food Engineering, 2018, 14, .	0.7	8

#	Article	IF	CITATIONS
127	Properties of rigid polyurethane foams prepared from recycled aircraft deicing agent with hexamethylene diisocyanate. Journal of Applied Polymer Science, 2013, 127, 1458-1465.	1.3	7
128	Modeling the Total Residence Time in a Rotary Dryer. International Journal of Food Engineering, 2015, 11, 405-410.	0.7	7
129	Drying Damage on Physiological Properties of Rice Seed Associated with Ultrastructure Changes. International Journal of Food Engineering, 2017, 13, .	0.7	7
130	Effects of moisture content and tillage methods on creep properties of paddy soil. PLoS ONE, 2021, 16, e0253623.	1.1	7
131	Influence of ultrasonic pretreatments on microwave hotâ€air flow rolling drying mechanism, thermal characteristics and rehydration dynamics of <i>Pleurotus eryngii</i> . Journal of the Science of Food and Agriculture, 2022, 102, 2100-2109.	1.7	7
132	Mechanical and Thermal Properties of Polyurethane Foams from Liquefied Sugar Beet Pulp. International Journal of Food Engineering, 2016, 12, 911-919.	0.7	6
133	Influence of Moisture Content on Physicomechanical Properties, Starch-Protein Microstructure and Fractal Parameter of Oat Groats. International Journal of Food Engineering, 2018, 14, .	0.7	6
134	Mechanical Properties of Hulless Barley Stem with Different Moisture Contents. International Journal of Food Engineering, 2019, 15, .	0.7	6
135	Viscoelastic analysis of oat grain within linear viscoelastic region by using dynamic mechanical analyzer. International Journal of Food Engineering, 2020, 16, .	0.7	6
136	Dynamic Viscoelastic Properties of Rice Kernels Studied by Dynamic Mechanical Analyzer. International Journal of Food Engineering, 2007, 3, .	0.7	5
137	Physical Properties of Naked Oat Seeds (<i>Avena nuda</i> L.). International Journal of Food Engineering, 2014, 10, 339-345.	0.7	5
138	Characterization of Pyrolysis Products Obtained from <i>Desmodesmus</i> sp. Cultivated in Anaerobic Digested Effluents (DADE). International Journal of Food Engineering, 2015, 11, 825-832.	0.7	5
139	Microwave-Driven Sugar Beet Pulp Liquefaction in Polyhydric Alcohols. International Journal of Food Engineering, 2017, 13, .	0.7	5
140	Study on Creep Properties of Japonica Cooked Rice and Its Relationship with Rice Chemical Compositions and Sensory Evaluation. International Journal of Food Engineering, 2009, 5, .	0.7	4
141	Temperature-Oriented Pyrolysis on the Decomposition Characteristics of <i>Chlorella pyrenoidosa</i> . International Journal of Food Engineering, 2016, 12, 295-301.	0.7	4
142	Effect of Drying Methods on the Rheological Properties of Sugar Beet Pulp Pectin. International Journal of Food Engineering, 2017, 13, .	0.7	4
143	Non-linear Rheological Properties of Soy Protein Isolate Dispersions and Acid-Induced Gels. International Journal of Food Engineering, 2017, 13, .	0.7	4
144	Effect of High Temperature Intermittent Drying on Rice Seed Viability and Vigor. International Journal of Food Engineering, 2017, 13, .	0.7	4

#	Article	IF	CITATIONS
145	Model predictive control strategy of head rice yield in paddy rice intermittent drying. Drying Technology, 0, , 1-11.	1.7	4
146	Effect of Ultrasound-Assisted Solvent Enzymatic Extraction on Fatty Acid Profiles, Physicochemical Properties, Bioactive Compounds, and Antioxidant Activity of Elaeagnus mollis Oil. Foods, 2022, 11, 359.	1.9	4
147	Effects of Flaxseed Gum Addition and Drying Conditions on Creep-Recovery Properties and Water Vapour Transmission Rate of Starch-Based Films. International Journal of Food Engineering, 2009, 5, .	0.7	3
148	Thermal, structure, and rheological properties of native potato flour prepared under different combined drying methods. Drying Technology, 2021, 39, 698-709.	1.7	3
149	Drying characteristics and bioactivity evolution of <i>Platycodon grandiflorum</i> as affected by different microwave combined drying methods. International Journal of Food Engineering, 2021, 17, 395-401.	0.7	3
150	Impact of high-pressure homogenization on the microstructure and rheological properties of citrus fiber. International Journal of Food Engineering, 2021, 17, 299-308.	0.7	3
151	Evaluation of yield and quality properties of Elaeagnus mollis oil produced by ultrasound-assisted solvent enzymatic extraction. International Journal of Food Engineering, 2021, .	0.7	3
152	Effects of Defatted Flaxseed Addition on Rheological Properties of Wheat Flour Slurry. International Journal of Food Engineering, 2013, 9, 457-466.	0.7	2
153	Modeling and Simulation of a Co-current Rotary Dryer. International Journal of Food Engineering, 2016, 12, 189-194.	0.7	2
154	Effect of Trypsin on Antioxidant Activity and Gel-Rheology of Flaxseed Protein. International Journal of Food Engineering, 2017, 13, .	0.7	2
155	Study on Mechanical Properties for Shearing Breakage of Oat Kernel. International Journal of Food Engineering, 2018, 14, .	0.7	2
156	Rheological properties of soy protein isolate – carboxymethyl flaxseed gum mixed dispersions under large amplitude oscillatory shear. International Journal of Food Engineering, 2020, 16, .	0.7	2
157	Dynamic Mechanical Properties of Polyurethane Foams Prepared From Liquefied Corn Stover with PMDI. , 2009, , .		1
158	The Digestibility and Thermal Properties of Fermented Flaxseed Protein. International Journal of Food Engineering, 2012, 8, .	0.7	1
159	Predicting Storage Conditions for Rice Seed with Thermodynamic Analysis. International Journal of Food Engineering, 2017, 13, .	0.7	1
160	Effect of Addition of Antioxidant Flaxseed Polypeptide on the Rheological Properties of Native Maize Starch. International Journal of Food Engineering, 2017, 13, .	0.7	1
161	Effect of Flaxseed Meal Addition on Dynamic Mechanical Properties of Rice Starch Films. , 2010, , .		0
162	Effect of extrusion conditions on physical properties of flaxseed-maize snack. , 2011, , .		0

#	Article	IF	CITATIONS
163	Direct sequencing of DNA pooling for screening highly informative SNPs in dairy cattle. Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2014, 36, 691-6.	0.1	0