Wilhelm May

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4757314/publications.pdf Version: 2024-02-01

Μιμειм Μαγ

#	Article	IF	CITATIONS
1	Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences. Tellus, Series B: Chemical and Physical Meteorology, 2022, 72, 1794236.	1.6	11
2	Climate change in the Baltic Sea region: a summary. Earth System Dynamics, 2022, 13, 457-593.	7.1	75
3	Coupled regional Earth system modeling in the Baltic Sea region. Earth System Dynamics, 2021, 12, 939-973.	7.1	13
4	Limited predictability of extreme decadal changes in the Arctic Ocean freshwater content. Climate Dynamics, 2018, 51, 3927-3942.	3.8	2
5	Contributions of soil moisture interactions to future precipitation changes in the GLACE-CMIP5 experiment. Climate Dynamics, 2017, 49, 1681-1704.	3.8	12
6	Vegetation–climate feedbacks modulate rainfall patterns in Africa under future climate change. Earth System Dynamics, 2016, 7, 627-647.	7.1	46
7	Projected Change—Atmosphere. Regional Climate Studies, 2016, , 149-173.	1.2	4
8	Contributions of soil moisture interactions to climate change in the tropics in the GLACE–CMIP5 experiment. Climate Dynamics, 2015, 45, 3275-3297.	3.8	24
9	Future Climate Projections. Advances in Global Change Research, 2013, , 53-118.	1.6	24
10	Tropical precipitation and convection changes in the Max Planck Institute Earth system model (MPl‣SM) in response to CO ₂ forcing. Journal of Advances in Modeling Earth Systems, 2013, 5, 85-97.	3.8	4
11	Assessing the strength of regional changes in near-surface climate associated with a global warming of 2°C. Climatic Change, 2012, 110, 619-644.	3.6	21
12	Effects of Changed Climate Conditions on Tropospheric Ozone over Three Centuries. Atmospheric and Climate Sciences, 2012, 02, 546-561.	0.3	8
13	The sensitivity of the Indian summer monsoon to a global warming of 2°C with respect to pre-industrial times. Climate Dynamics, 2011, 37, 1843-1868.	3.8	45
14	Prospects for climate change on three Polynesian outliers in Solomon Islands: Exposure, sensitivity and adaptive capacity. Geografisk Tidsskrift, 2011, 111, 43-57.	0.6	9
15	Climate change on three Polynesian outliers in the Solomon Islands: Impacts, vulnerability and adaptation. Geografisk Tidsskrift, 2009, 109, 1-13.	0.6	42
16	Regional climate changes associated with a global "2 °C-stabilization" scenario. IOP Conference Series: Earth and Environmental Science, 2009, 6, 052019.	0.3	0
17	Potential future changes in the characteristics of daily precipitation in Europe simulated by the HIRHAM regional climate model. Climate Dynamics, 2008, 30, 581-603.	3.8	72
18	Climatic changes associated with a global "2°C-stabilization―scenario simulated by the ECHAM5/MPI-OM coupled climate model. Climate Dynamics, 2008, 31, 283-313.	3.8	35

WILHELM MAY

#	Article	IF	CITATIONS
19	Variability and extremes of daily rainfall during the Indian summer monsoon in the period 1901–1989. Global and Planetary Change, 2004, 44, 83-105.	3.5	40
20	The Indian Summer Monsoon and its Sensitivity to the Mean SSTs: Simulations with the ECHAM4 AGCM at T106 Horizontal Resolution Journal of the Meteorological Society of Japan, 2003, 81, 57-83.	1.8	12
21	Simulated changes of the Indian summer monsoon under enhanced greenhouse gas conditions in a global time-slice experiment. Geophysical Research Letters, 2002, 29, 22-1.	4.0	81
22	Enhanced resolution modelling study on anthropogenic climate change: changes in extremes of the hydrological cycle. International Journal of Climatology, 2002, 22, 755-777.	3.5	114
23	Changes in the mean and extremes of the hydrological cycle in Europe under enhanced greenhouse gas conditions in a global time-slice experiment. Advances in Global Change Research, 2002, , 1-29.	1.6	4
24	Soil carbon insures arable crop production against increasing adverse weather due to climate change. Environmental Research Letters, 0, , .	5.2	6