Volkmar Heinrich

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4756909/volkmar-heinrich-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

41
papers

2,278
citations

24
h-index

47
g-index

48
ext. papers

4,76
ext. papers

4,76
avg, IF
L-index

#	Paper	IF	Citations
41	Spatial proximity of proteins surrounding zyxin under force-bearing conditions. <i>Molecular Biology of the Cell</i> , 2021 , 32, 1221-1228	3.5	3
40	Force-induced recruitment of cten along keratin network in epithelial cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 19799-19801	11.5	8
39	Extension of chemotactic pseudopods by nonadherent human neutrophils does not require or cause calcium bursts. <i>Science Signaling</i> , 2018 , 11,	8.8	9
38	Mechanistic Understanding of Single-Cell Behavior is Essential for Transformative Advances in Biomedicine. <i>Yale Journal of Biology and Medicine</i> , 2018 , 91, 279-289	2.4	5
37	Quantifying the Sensitivity of Human Immune Cells to Chemoattractant. <i>Biophysical Journal</i> , 2017 , 112, 834-837	2.9	5
36	Analytical Prediction of the Spatiotemporal Distribution of Chemoattractants around Their Source: Theory and Application to Complement-Mediated Chemotaxis. <i>Frontiers in Immunology</i> , 2017 , 8, 578	8.4	7
35	Atrial natriuretic peptide down-regulates neutrophil recruitment on inflamed endothelium by reducing cell deformability and resistance to detachment force. <i>Biorheology</i> , 2016 , 53, 109	1.7	
34	Controlled One-on-One Encounters between Immune Cells and Microbes Reveal Mechanisms of Phagocytosis. <i>Biophysical Journal</i> , 2015 , 109, 469-76	2.9	26
33	Coccidioides Endospores and Spherules Draw Strong Chemotactic, Adhesive, and Phagocytic Responses by Individual Human Neutrophils. <i>PLoS ONE</i> , 2015 , 10, e0129522	3.7	35
32	Atrial natriuretic peptide down-regulates neutrophil recruitment on inflamed endothelium by reducing cell deformability and resistance to detachment force. <i>Biorheology</i> , 2015 , 52, 447-63	1.7	10
31	The Vi capsular polysaccharide enables Salmonella enterica serovar typhi to evade microbe-guided neutrophil chemotaxis. <i>PLoS Pathogens</i> , 2014 , 10, e1004306	7.6	52
30	Differential effects of serum heat treatment on chemotaxis and phagocytosis by human neutrophils. <i>PLoS ONE</i> , 2013 , 8, e54735	3.7	18
29	Blurred line between chemotactic chase and phagocytic consumption: an immunophysical single-cell perspective. <i>Journal of Cell Science</i> , 2011 , 124, 3041-51	5.3	25
28	Target-specific mechanics of phagocytosis: protrusive neutrophil response to zymosan differs from the uptake of antibody-tagged pathogens. <i>Journal of Cell Science</i> , 2011 , 124, 1106-14	5.3	41
27	Protrusive push versus enveloping embrace: computational model of phagocytosis predicts key regulatory role of cytoskeletal membrane anchors. <i>PLoS Computational Biology</i> , 2011 , 7, e1001068	5	30
26	Single-cell adhesion tests against functionalized microspheres arrayed on AFM cantilevers confirm heterophilic E- and N-cadherin binding. <i>Biophysical Journal</i> , 2010 , 99, L100-2	2.9	21
25	Versatile horizontal force probe for mechanical tests on pipette-held cells, particles, and membrane capsules. <i>Biophysical Journal</i> , 2009 , 96, 1218-31	2.9	15

(2001-2009)

24	Baseline mechanical characterization of J774 macrophages. <i>Biophysical Journal</i> , 2009 , 96, 248-54	2.9	64
23	Imaging biomolecular interactions by fast three-dimensional tracking of laser-confined carrier particles. <i>Langmuir</i> , 2008 , 24, 1194-203	4	32
22	Biophysics in reverse: Using blood cells to accurately calibrate force-microscopy cantilevers. <i>Applied Physics Letters</i> , 2008 , 92, 153902	3.4	7
21	Force versus axial deflection of pipette-aspirated closed membranes. <i>Biophysical Journal</i> , 2007 , 93, 363	-7239	20
20	Mechanics of neutrophil phagocytosis: experiments and quantitative models. <i>Journal of Cell Science</i> , 2006 , 119, 1903-13	5.3	161
19	Modulation of cell adhesion and motility in the immune system by Myo1f. <i>Science</i> , 2006 , 314, 136-9	33.3	79
18	Nonlithographic fabrication of microfluidic devices. <i>Journal of the American Chemical Society</i> , 2006 , 128, 16062-72	16.4	56
17	Automated, high-resolution micropipet aspiration reveals new insight into the physical properties of fluid membranes. <i>Langmuir</i> , 2005 , 21, 1962-71	4	43
16	Nano-to-microscale mechanical switches and fuses mediate adhesive contacts between leukocytes and the endothelium. <i>Journal of Chemical Information and Modeling</i> , 2005 , 45, 1482-90	6.1	11
15	Nano- to microscale dynamics of P-selectin detachment from leukocyte interfaces. I. Membrane separation from the cytoskeleton. <i>Biophysical Journal</i> , 2005 , 88, 2288-98	2.9	113
14	Nano- to microscale dynamics of P-selectin detachment from leukocyte interfaces. II. Tether flow terminated by P-selectin dissociation from PSGL-1. <i>Biophysical Journal</i> , 2005 , 88, 2299-308	2.9	70
13	Nano-to-micro scale dynamics of P-selectin detachment from leukocyte interfaces. III. Numerical simulation of tethering under flow. <i>Biophysical Journal</i> , 2005 , 88, 1676-83	2.9	51
12	Mechanics of neutrophil phagocytosis: behavior of the cortical tension. <i>Journal of Cell Science</i> , 2005 , 118, 1789-97	5.3	120
11	Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 11281	-6 ^{11.5}	266
10	Dynamic strength of fluid membranes. <i>Comptes Rendus Physique</i> , 2003 , 4, 265-274	1.4	30
9	Dynamic tension spectroscopy and strength of biomembranes. <i>Biophysical Journal</i> , 2003 , 85, 2342-50	2.9	341
8	Exploring Reaction Pathways of Single-Molecule Interactions through the Manipulation and Tracking of a Potential-Confined Microsphere in Three Dimensions. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 790, 1		
7	Shapes of nearly cylindrical, axisymmetric bilayer membranes. <i>European Physical Journal E</i> , 2001 , 6, 91-9	98.5	18

6	Elastic thickness compressibilty of the red cell membrane. <i>Biophysical Journal</i> , 2001 , 81, 1452-63	2.9	77
5	Free energy of closed membrane with anisotropic inclusions. <i>European Physical Journal B</i> , 1999 , 10, 5-8	1.2	107
4	Vesicle deformation by an axial load: from elongated shapes to tethered vesicles. <i>Biophysical Journal</i> , 1999 , 76, 2056-71	2.9	93
3	Large deviations of the average shapes of vesicles from equilibrium:Effects of thermal fluctuations in the presence of constraints. <i>Physical Review E</i> , 1997 , 55, 1809-1818	2.4	13
2	A piconewton force transducer and its application to measurement of the bending stiffness of phospholipid membranes. <i>Annals of Biomedical Engineering</i> , 1996 , 24, 595-605	4.7	110
1	Nonaxisymmetric vesicle shapes in a generalized bilayer-couple model and the transition between oblate and prolate axisymmetric shapes. <i>Physical Review E</i> , 1993 , 48, 3112-3123	2.4	85