
Amanda Nancy Sferruzzi-Perri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4756369/publications.pdf Version: 2024-02-01

Amanda Nancy

#	Article	IF	CITATIONS
1	The Role of Placental Hormones in Mediating Maternal Adaptations to Support Pregnancy and Lactation. Frontiers in Physiology, 2018, 9, 1091.	1.3	301
2	Placental efficiency and adaptation: endocrine regulation. Journal of Physiology, 2009, 587, 3459-3472.	1.3	253
3	Beyond oxygen: complex regulation and activity of hypoxia inducible factors in pregnancy. Human Reproduction Update, 2010, 16, 415-431.	5.2	206
4	The Programming Power of the Placenta. Frontiers in Physiology, 2016, 7, 33.	1.3	154
5	An obesogenic diet during mouse pregnancy modifies maternal nutrient partitioning and the fetal growth trajectory. FASEB Journal, 2013, 27, 3928-3937.	0.2	123
6	Placental phenotype and the insulinâ€like growth factors: resource allocation to fetal growth. Journal of Physiology, 2017, 595, 5057-5093.	1.3	120
7	Neutrophils induce proangiogenic T cells with a regulatory phenotype in pregnancy. Proceedings of the United States of America, 2016, 113, E8415-E8424.	3.3	112
8	Placental-Specific lgf2 Deficiency Alters Developmental Adaptations to Undernutrition in Mice. Endocrinology, 2011, 152, 3202-3212.	1.4	108
9	Maternal Insulin-Like Growth Factors-I and -II Act via Different Pathways to Promote Fetal Growth. Endocrinology, 2006, 147, 3344-3355.	1.4	104
10	Exercise rescues obese mothers' insulin sensitivity, placental hypoxia and male offspring insulin sensitivity. Scientific Reports, 2017, 7, 44650.	1.6	88
11	Placental phenotype and resource allocation to fetal growth are modified by the timing and degree of hypoxia during mouse pregnancy. Journal of Physiology, 2016, 594, 1341-1356.	1.3	75
12	Placental mitochondria adapt developmentally and in response to hypoxia to support fetal growth. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1621-1626.	3.3	75
13	Maternal corticosterone regulates nutrient allocation to fetal growth in mice. Journal of Physiology, 2012, 590, 5529-5540.	1.3	71
14	Review: Endocrine regulation of placental phenotype. Placenta, 2015, 36, S50-S59.	0.7	70
15	Placental Adaptation to Early-Onset Hypoxic Pregnancy and Mitochondria-Targeted Antioxidant Therapy in a Rodent Model. American Journal of Pathology, 2018, 188, 2704-2716.	1.9	65
16	Hormonal and nutritional drivers of intrauterine growth. Current Opinion in Clinical Nutrition and Metabolic Care, 2013, 16, 298-309.	1.3	63
17	A trans-homologue interaction between reciprocally imprinted <i>miR-127</i> and <i>Rtl1</i> regulates placenta development. Development (Cambridge), 2015, 142, 2425-30.	1.2	62
18	The Residual Innate Lymphoid Cells in NFIL3-Deficient Mice Support Suboptimal Maternal Adaptations to Pregnancy. Frontiers in Immunology, 2016, 7, 43.	2.2	62

AMANDA NANCY

#	Article	IF	CITATIONS
19	Maternal and fetal genomes interplay through phosphoinositol 3-kinase(PI3K)-p110α signaling to modify placental resource allocation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11255-11260.	3.3	62
20	Hyperandrogenism and insulin resistance modulate gravid uterine and placental ferroptosis in PCOS-like rats. Journal of Endocrinology, 2020, 246, 247-263.	1.2	62
21	Distinct Actions of Insulin-Like Growth Factors (IGFs) on Placental Development and Fetal Growth: Lessons from Mice and Guinea Pigs. Placenta, 2008, 29, 42-47.	0.7	61
22	A Westernâ€style obesogenic diet alters maternal metabolic physiology with consequences for fetal nutrient acquisition in mice. Journal of Physiology, 2017, 595, 4875-4892.	1.3	60
23	Hyperandrogenism and insulin resistance induce gravid uterine defects in association with mitochondrial dysfunction and aberrant reactive oxygen species production. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E794-E809.	1.8	57
24	Early Pregnancy Maternal Endocrine Insulin-Like Growth Factor I Programs the Placenta for Increased Functional Capacity throughout Gestation. Endocrinology, 2007, 148, 4362-4370.	1.4	55
25	Adaptations of the human placenta to hypoxia: opportunities for interventions in fetal growth restriction. Human Reproduction Update, 2021, 27, 531-569.	5.2	54
26	Human placental development and function. Seminars in Cell and Developmental Biology, 2022, 131, 66-77.	2.3	54
27	Early treatment of the pregnant guinea pig with IGFs promotes placental transport and nutrient partitioning near term. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E668-E676.	1.8	53
28	Csf2 Null Mutation Alters Placental Gene Expression and Trophoblast Glycogen Cell and Giant Cell Abundance in Mice1. Biology of Reproduction, 2009, 81, 207-221.	1.2	52
29	Near to One's Heart: The Intimate Relationship Between the Placenta and Fetal Heart. Frontiers in Physiology, 2018, 9, 629.	1.3	52
30	Hyperandrogenism and insulin resistanceâ€induced fetal loss: evidence for placental mitochondrial abnormalities and elevated reactive oxygen species production in pregnant rats that mimic the clinical features of polycystic ovary syndrome. Journal of Physiology, 2019, 597, 3927-3950.	1.3	52
31	The imprinted Igf2-Igf2r axis is critical for matching placental microvasculature expansion to fetal growth. Developmental Cell, 2022, 57, 63-79.e8.	3.1	52
32	Environmental regulation of placental phenotype: implications for fetal growth. Reproduction, Fertility and Development, 2012, 24, 80.	0.1	51
33	Hypoxia, AMPK activation and uterine artery vasoreactivity. Journal of Physiology, 2016, 594, 1357-1369.	1.3	51
34	High-resolution contrast-enhanced microCT reveals the true three-dimensional morphology of the murine placenta. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13927-13936.	3.3	47
35	Corticosterone alters maternoâ€fetal glucose partitioning and insulin signalling in pregnant mice. Journal of Physiology, 2015, 593, 1307-1321.	1.3	40
36	DNA Methylation Divergence and Tissue Specialization in the Developing Mouse Placenta. Molecular Biology and Evolution, 2017, 34, 1702-1712.	3.5	39

AMANDA NANCY

#	Article	IF	CITATIONS
37	Circulating SPINT1 is a biomarker of pregnancies with poor placental function and fetal growth restriction. Nature Communications, 2020, 11, 2411.	5.8	37
38	Pregnancyâ€induced changes in βâ€cell function: what are the key players?. Journal of Physiology, 2022, 600, 1089-1117.	1.3	36
39	Fetal and trophoblast PI3K p110α have distinct roles in regulating resource supply to the growing fetus in mice. ELife, 2019, 8, .	2.8	36
40	Proximity to Delivery Alters Insulin Sensitivity and Glucose Metabolism in Pregnant Mice. Diabetes, 2016, 65, 851-860.	0.3	34
41	Exploring the causes and consequences of maternal metabolic maladaptations during pregnancy: Lessons from animal models. Placenta, 2020, 98, 43-51.	0.7	34
42	TLR4-Associated IRF-7 and NFκB Signaling Act as a Molecular Link Between Androgen and Metformin Activities and Cytokine Synthesis in the PCOS Endometrium. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e1022-e1040.	1.8	34
43	Molecular mechanisms governing offspring metabolic programming in rodent models of in utero stress. Cellular and Molecular Life Sciences, 2020, 77, 4861-4898.	2.4	33
44	Dietâ€induced maternal obesity impacts fetoâ€placental growth and induces sexâ€specific alterations in placental morphology, mitochondrial bioenergetics, dynamics, lipid metabolism and oxidative stress in mice. Acta Physiologica, 2022, 234, e13795.	1.8	31
45	Developmental programming of offspring adipose tissue biology and obesity risk. International Journal of Obesity, 2021, 45, 1170-1192.	1.6	30
46	Igf2 deletion alters mouse placenta endocrine capacity in a sexually dimorphic manner. Journal of Endocrinology, 2020, 246, 93-108.	1.2	30
47	Advanced maternal age compromises fetal growth and induces sex-specific changes in placental phenotype in rats. Scientific Reports, 2019, 9, 16916.	1.6	29
48	Interleukin-5 Transgene Expression and Eosinophilia Are Associated with Retarded Mammary Gland Development in Mice1. Biology of Reproduction, 2003, 69, 224-233.	1.2	28
49	Maternal Insulin-like Growth Factor-II Promotes Placental Functional Development Via the Type 2 IGF Receptor in the Guinea Pig. Placenta, 2008, 29, 347-355.	0.7	26
50	Developmental programming of the female reproductive system—a review. Biology of Reproduction, 2021, 104, 745-770.	1.2	26
51	Placental mitochondrial function in response to gestational exposures. Placenta, 2021, 104, 124-137.	0.7	25
52	Suppression of uterine and placental ferroptosis by N-acetylcysteine in a rat model of polycystic ovary syndrome. Molecular Human Reproduction, 2021, 27, .	1.3	25
53	Adaptations in Placental Phenotype Depend on Route and Timing of Maternal Dexamethasone Administration in Mice1. Biology of Reproduction, 2013, 89, 80.	1.2	24
54	Regulating needs: Exploring the role of insulin-like growth factor-2 signalling in materno-fetal resource allocation. Placenta, 2018, 64, S16-S22.	0.7	21

AMANDA NANCY

#	Article	IF	CITATIONS
55	Double-label immunohistochemistry to assess labyrinth structure of the mouse placenta with stereology. Placenta, 2020, 94, 44-47.	0.7	21
56	Increased uterine androgen receptor protein abundance results in implantation and mitochondrial defects in pregnant rats with hyperandrogenism and insulin resistance. Journal of Molecular Medicine, 2021, 99, 1427-1446.	1.7	20
57	Maternal gut microbiota Bifidobacterium promotes placental morphogenesis, nutrient transport and fetal growth in mice. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	19
58	Exercise alters the molecular pathways of insulin signaling and lipid handling in maternal tissues of obese pregnant mice. Physiological Reports, 2019, 7, e14202.	0.7	18
59	Placental secretome characterization identifies candidates for pregnancy complications. Communications Biology, 2021, 4, 701.	2.0	18
60	Progressive uterine artery occlusion in the Guinea pig leads to defects in placental structure that relate to fetal growth. Placenta, 2018, 72-73, 36-40.	0.7	16
61	Placental hypoxia: What have we learnt from small animal models?. Placenta, 2021, 113, 29-47.	0.7	13
62	Dexamethasone treatment of pregnant F0 mice leads to parent of origin-specific changes in placental function of the F2 generation. Reproduction, Fertility and Development, 2015, 27, 704.	0.1	12
63	Loss of imprinting of the <i>Igf2-H19</i> ICR1 enhances placental endocrine capacity via sex-specific alterations in signalling pathways in the mouse. Development (Cambridge), 2022, 149, .	1.2	12
64	Hypoxia, fetal and neonatal physiology: 100 years on from Sir Joseph Barcroft. Journal of Physiology, 2016, 594, 1105-1111.	1.3	10
65	Inhibition of Phosphoinositide-3-Kinase Signaling Promotes the Stem Cell State of Trophoblast. Stem Cells, 2019, 37, 1307-1318.	1.4	10
66	Placental structure, function, and mitochondrial phenotype relate to fetal size in each fetal sex in mice. Biology of Reproduction, 2022, 106, 1292-1311.	1.2	10
67	Assessment of Placental Transport Function in Studies of Disease Programming. Methods in Molecular Biology, 2018, 1735, 239-250.	0.4	8
68	Placental mitochondria central to gestational diabetes pathogenesis?. Journal of Physiology, 2021, 599, 1019-1020.	1.3	6
69	Fused placentas: Till birth do us part. Placenta, 2021, 103, 177-179.	0.7	5
70	Gaps in the knowledge of thyroid hormones and placental biology. Biology of Reproduction, 2022, 106, 1033-1048.	1.2	5
71	Ablation of PI3K-p110alpha Impairs Maternal Metabolic Adaptations to Pregnancy. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
72	Maternal insulin-like growth factor 1 and 2 differentially affect the renin–angiotensin system during pregnancy in the guinea pig. Growth Hormone and IGF Research, 2015, 25, 141-147.	0.5	3

Amanda Nancy

#	Article	IF	CITATIONS
73	Identification of Structural and Molecular Signatures Mediating Adaptive Changes in the Mouse Kidney in Response to Pregnancy. International Journal of Molecular Sciences, 2022, 23, 6287.	1.8	3
74	A diet high in sugar and fat alters the insulin signalling in the mouse placenta. Placenta, 2014, 35, A70.	0.7	1
75	Mice with placental junctional zone Igf2 deletion fail to metabolically adapt during pregnancy. Placenta, 2017, 57, 247-248.	0.7	1
76	Disruption of imprinting at the Igf2-H19 locus in the placental endocrine zone affects maternal systemic metabolism. Placenta, 2019, 83, e45.	0.7	1
77	Inspection of three-dimensional morphology of the murine placenta by high resolution contrast-enhanced microCT. Placenta, 2019, 83, e83.	0.7	1