
Andrzej Czerwinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4756259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facile preparation of hierarchical 3D current collector for Li-ion anodes. Electrochimica Acta, 2022, 403, 139698.	2.6	1
2	Improved hydrogen sorption properties of Pd in protic and aprotic ionic liquids effected by superacid addition. Journal of Alloys and Compounds, 2022, 903, 163853.	2.8	4
3	Effect of the Alloying Metal on the Corrosion Resistance of Pd-Rich Binary Alloys with Pt, Rh, and Ru in Sulfuric Acid. Materials, 2021, 14, 2923.	1.3	5
4	Applications of Carbon in Rechargeable Electrochemical Power Sources: A Review. Energies, 2021, 14, 2649.	1.6	26
5	Conductive porous carbon (CPC) as an alternative to reticulated vitreous carbon (RVC) in lead acid battery current collectors. Journal of Power Sources Advances, 2021, 12, 100074.	2.6	4
6	Electrochemical Properties of Pristine and Vanadium Doped LiFePO4 Nanocrystallized Glasses. Energies, 2021, 14, 8042.	1.6	5
7	The Modification of Electrochemical Properties of Pd by its Alloying with Ru, Rh, and Pt: the Study of Ternary Systems. Electrocatalysis, 2020, 11, 247-257.	1.5	7
8	Electrochemical Impedance Spectroscopy Characterization of Silicon-Based Electrodes for Li-Ion Batteries. Electrocatalysis, 2020, 11, 160-169.	1.5	11
9	Surface Oxidation of Nano-Silicon as a Method for Cycle Life Enhancement of Li-ion Active Materials. Molecules, 2020, 25, 4093.	1.7	8
10	UV-Cured Poly(Siloxane-Urethane)-Based Polymer Composite Materials for Lithium Ion Batteries—The Effect of Modification with Ionic Liquids. Materials, 2020, 13, 4978.	1.3	10
11	A New Technique for In Situ Determination of the Active Surface Area Changes of Li–lon Battery Electrodes. Batteries and Supercaps, 2020, 3, 1028-1039.	2.4	13
12	Structure, Morphology, and Electrochemical Properties of Carbon-Coated Lithium-Manganese Orthosilicate with Sucrose as a Carbon Source. Electrocatalysis, 2020, 11, 329-337.	1.5	1
13	Impact of natural and synthetic graphite milling energy on lithium-ion electrode capacity and cycle life. Carbon, 2019, 145, 82-89.	5.4	27
14	Enhanced kinetics of hydrogen electrosorption in AB5 hydrogen storage alloy decorated with Pd nanoparticles. Electrochemistry Communications, 2019, 100, 100-103.	2.3	20
15	Applications of carbon in lead-acid batteries: a review. Journal of Solid State Electrochemistry, 2019, 23, 693-705.	1.2	87
16	Analysis of the selected heavy metals content inthe lead-acid battery polymeric separator. Polimery, 2019, 64, 442-451.	0.4	0
17	Effect of Temperature, Electrode Potential, and Bulk Composition on Hydrogen Electrosorption into Palladium-Ruthenium Alloys—Comparative Study with Other Binary Systems. Electrocatalysis, 2018, 9, 593-601.	1.5	2
18	Corrosion of Hydrogen Storage Metal Alloy LaMm-Ni4.1Al0.3Mn0.4Co0.45 in the Aqueous Solutions of Alkali Metal Hydroxides. Materials, 2018, 11, 2423.	1.3	7

#	Article	IF	CITATIONS
19	Single Step, Electrochemical Preparation of Copper-Based Positive Electrode for Lithium Primary Cells. Materials, 2018, 11, 2126.	1.3	3
20	The effect of compressive stresses on a silicon electrode's cycle life in a Li-ion battery. RSC Advances, 2018, 8, 22546-22551.	1.7	24
21	Comparative Physicochemical and Electrochemical Characterization of the Structure and Composition of Thin Pd Binary and Ternary Codeposits with Pt, Ru, and Rh. Materials, 2018, 11, 798.	1.3	5
22	The charging-discharging behavior of the lead-acid cell with electrodes based on carbon matrix. Journal of Solid State Electrochemistry, 2018, 22, 2703-2714.	1.2	20
23	Comparative study of hydrogen electrosorption from alkali metals electrolytes and hydrogen sorption from gas phase in AB5 alloy. Electrochimica Acta, 2017, 252, 381-386.	2.6	7
24	Electrochemical properties of lithium–titanium oxide, modified with Ag–Cu particles, as a negative electrode for lithium-ion batteries. RSC Advances, 2017, 7, 52151-52164.	1.7	45
25	Electrochemical Behavior of a Pd Thin Film Electrode in Concentrated Alkaline Media. Electrocatalysis, 2017, 8, 295-300.	1.5	20
26	Determination of 238Pu, 239+240Pu and 241Am in air filters. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311, 1271-1276.	0.7	0
27	Voltammetric and impedance characterization of Li 4 Ti 5 O 12 /n-Ag composite for lithium-ion batteries. Electrochimica Acta, 2016, 219, 277-283.	2.6	30
28	In Situ XRD and TEM Studies of Sol-Gel-Based Synthesis of LiFePO ₄ . Crystal Growth and Design, 2016, 16, 5006-5013.	1.4	20
29	STEM study of Li ₄ Ti ₅ O ₁₂ anode material modified with Ag nanoparticles. Journal of Microscopy, 2016, 264, 41-47.	0.8	10
30	Analysis of metals content in polyethylene packaging materials in view of the existing legislation. Polimery, 2016, 61, 98-105.	0.4	1
31	Validation of the method for determination of plutonium isotopes in urine samples and its application in a nuclear facility at Otwock. Nukleonika, 2015, 60, 181-186.	0.3	3
32	Characterization and electrochemical behavior of Pd-rich Pd-Ru alloys. Electrochimica Acta, 2014, 132, 214-222.	2.6	16
33	Influence of electrolyte composition and temperature on behaviour of AB5 hydrogen storage alloy used as negative electrode in Ni–MH batteries. Journal of Power Sources, 2014, 263, 304-309.	4.0	31
34	Li4Ti5O12 modified with Ag nanoparticles as an advanced anode material in lithium-ion batteries. Journal of Power Sources, 2014, 245, 764-771.	4.0	89
35	Thin layer spectroelectrochemical (RVC-OTTLE) studies of pertechnetate reduction in acidic media. Journal of Radioanalytical and Nuclear Chemistry, 2014, 300, 229-234.	0.7	6
36	The effect of electrode thickness on electrochemical performance of LiMn2O4 cathode synthesized by modified sol–gel method. Solid State Ionics, 2014, 262, 9-13.	1.3	27

#	Article	IF	CITATIONS
37	Thermodynamics of hydride formation and decomposition in electrodeposited Pd-rich Pd–Ru alloys. Electrochemistry Communications, 2014, 48, 40-43.	2.3	13
38	Quartz crystal microbalance study of palladium alloys. Part 1: Electrodeposition of Pt–Pd–Ru alloys. Journal of Electroanalytical Chemistry, 2014, 729, 27-33.	1.9	4
39	Influence of milling time in solid-state synthesis on structure, morphology and electrochemical properties of Li4Ti5O12 of spinel structure. Powder Technology, 2014, 266, 372-377.	2.1	34
40	Influence of LiMn2O4 modification with CeO2 on electrode performance. Electrochimica Acta, 2014, 136, 286-291.	2.6	42
41	Thin layer spectroelectrochemical studies of pertechnetate reduction on the gold electrodes in acidic media. Electrochimica Acta, 2014, 121, 44-48.	2.6	7
42	The role of SnO2 surface coating on the electrochemical performance of LiFePO4 cathode materials. Electrochimica Acta, 2013, 108, 532-539.	2.6	32
43	Influence of temperature on hydrogen electrosorption into palladium-noble metal alloys. Part 3: Palladium–rhodium alloys. Electrochimica Acta, 2013, 107, 269-275.	2.6	15
44	Fuel cell testing of Pt–Ru catalysts supported on differently prepared and pretreated carbon nanotubes. Electrochimica Acta, 2013, 98, 94-103.	2.6	22
45	On the Nature of Voltammetric Signals Originating from Hydrogen Electrosorption into Palladium-Noble Metal Alloys. Materials, 2013, 6, 4817-4835.	1.3	15
46	The Platinum Catalyst Prepared from Platinum Carbonyls. Journal of New Materials for Electrochemical Systems, 2013, 16, 263-267.	0.3	0
47	Characteristic of hydrogen-saturated Pd-based alloys for the application in electrochemical capacitors. Journal of Solid State Electrochemistry, 2012, 16, 2533-2539.	1.2	18
48	Pd–Ru electrodeposits with high hydrogen absorption capacity. Electrochemistry Communications, 2012, 20, 175-177.	2.3	17
49	Electrochemical and spectroelectrochemical studies of pertechnetate electroreduction in acidic media. Electrochimica Acta, 2012, 76, 165-173.	2.6	19
50	New high-energy lead-acid battery with reticulated vitreous carbon as a carrier and current collector. Journal of Power Sources, 2011, 198, 378-378.	4.0	6
51	The method of limited volume electrodes as a tool for hydrogen electrosorption studies in palladium and its alloys. Journal of Solid State Electrochemistry, 2011, 15, 2489-2522.	1.2	21
52	Influence of rhodium additive on hydrogen electrosorption in palladium-rich Pd–Rh alloys. Journal of Solid State Electrochemistry, 2011, 15, 2477-2487.	1.2	22
53	Kinetics and mechanism of hydrogen electrosorption in palladium-based alloys. Solid State Ionics, 2011, 190, 18-24.	1.3	21
54	Influence of temperature on hydrogen electrosorption into palladium-noble metal alloys. Part 2—Palladium–platinum alloys. Electrochimica Acta, 2011, 56, 2344-2350.	2.6	18

#	Article	IF	CITATIONS
55	Electrochemical characterization of the surface and methanol electrooxidation on Pt–Rh–Pd ternary alloys. Journal of Power Sources, 2011, 196, 3513-3522.	4.0	27
56	CHARACTERIZATION OF Pt – Rh – Ru CATALYSTS FOR METHANOL OXIDATION. Functional Materials Letters, 2011, 04, 187-191.	0.7	7
57	Electrochemical behavior of negative electrode of lead-acid cells based on reticulated vitreous carbon carrier. Journal of Power Sources, 2010, 195, 7524-7529.	4.0	20
58	Analysis of the influence of rhodium addition to platinum on its activity towards methanol electrooxidation by EIS. Journal of Solid State Electrochemistry, 2010, 14, 515-521.	1.2	9
59	Analysis of the electrochemical quartz crystal microbalance response during oxidation of carbon oxides adsorption products on platinum group metals and alloys. Journal of Solid State Electrochemistry, 2010, 14, 1279-1292.	1.2	5
60	Hybrid lead-acid battery with reticulated vitreous carbon as a carrier- and current-collector of negative plate. Journal of Power Sources, 2010, 195, 7530-7534.	4.0	32
61	Studies on metal hydride electrodes containing no binder additives. Journal of Power Sources, 2010, 195, 7517-7523.	4.0	20
62	Electrochemical preparation and characterization of thin deposits of Pd-noble metal alloys. Thin Solid Films, 2010, 518, 3680-3689.	0.8	36
63	Hydrogen electrosorption into Pd–Pt–Au ternary alloys. Electrochimica Acta, 2010, 55, 1150-1159.	2.6	33
64	Influence of temperature on hydrogen electrosorption into palladium–noble metal alloys. Part 1: Palladium–gold alloys. Electrochimica Acta, 2010, 56, 235-242.	2.6	21
65	Characterization of Metal Alloy Powder Materials for Metal-Hydride Anodes Using Thin-Layer Electrode Approach. Journal of the Electrochemical Society, 2010, 157, A254.	1.3	7
66	Electrochemical absorption and oxidation of hydrogen on palladium alloys with platinum, gold and rhodium. Physical Chemistry Chemical Physics, 2010, 12, 14567.	1.3	19
67	The Investigation on the Mechanism of Electrochemical Hydrogen Storage in Sandwich Nickel Foam/Palladium/Carbon Nanofibers Electrodes. Journal of Nanoscience and Nanotechnology, 2009, 9, 3858-3865.	0.9	8
68	Electrosorption of carbon dioxide on platinum group metals and alloys—a review. Journal of Solid State Electrochemistry, 2009, 13, 813-827.	1.2	25
69	RVC as new carbon material for batteries. Journal of Applied Electrochemistry, 2009, 39, 559-567.	1.5	25
70	Influence of hydrogen electrosorption on surface oxidation of Pd and Pd-noble metal alloys. Electrochemistry Communications, 2009, 11, 978-982.	2.3	15
71	Anodic oxidation of Pd alloys with Pt and Rh. Journal of Alloys and Compounds, 2009, 473, 220-226.	2.8	20
72	Electrochemical behavior of CO, CO2 and methanol adsorption products formed on Pt–Rh alloys of various surface compositions. Journal of Power Sources, 2008, 181, 24-30.	4.0	21

#	Article	IF	CITATIONS
73	Hydrogen in thin Pd-based layers deposited on reticulated vitreous carbon—A new system for electrochemical capacitors. Journal of Power Sources, 2008, 185, 1598-1604.	4.0	29
74	EQCM studies on Pd–Ni alloy oxidation in basic solution. Journal of Solid State Electrochemistry, 2008, 12, 375-385.	1.2	66
75	Selected electrochemical properties of Pd–Au alloys: hydrogen absorption and surface oxidation. Journal of Solid State Electrochemistry, 2008, 12, 1589-1598.	1.2	44
76	Electrochemical behaviour of palladium electrode: Oxidation, electrodissolution and ionic adsorption. Electrochimica Acta, 2008, 53, 7583-7598.	2.6	395
77	Electrosorption of hydrogen into palladium–rhodium alloys. Electrochimica Acta, 2008, 53, 7812-7816.	2.6	18
78	Electrochemical study on the adsorption of carbon oxides and oxidation of their adsorption products on platinum group metals and alloys. Physical Chemistry Chemical Physics, 2008, 10, 3752.	1.3	27
79	Electro-oxidation of methanol on Pt-Rh alloys. Electrochimica Acta, 2007, 52, 5565-5573.	2.6	40
80	Correlations between hydrogen electrosorption properties and composition of Pd-noble metal alloys. Electrochemistry Communications, 2007, 9, 671-676.	2.3	32
81	Electrochemical behavior of thin polycrystalline rhodium layers studied by cyclic voltammetry and quartz crystal microbalance. Electrochimica Acta, 2007, 52, 4560-4565.	2.6	33
82	The study of hydrogen electrosorption in layered nickel foam/palladium/carbon nanofibers composite electrodes. Electrochimica Acta, 2007, 52, 5677-5684.	2.6	32
83	Electrosorption of hydrogen into palladium–rhodium alloys. Electrochimica Acta, 2006, 51, 3112-3117.	2.6	49
84	Quartz crystal microbalance studies on electrochemical behavior of electrodeposited Pd–Ni alloys. Electrochimica Acta, 2006, 51, 2221-2229.	2.6	10
85	Used batteries collection and recycling in Poland. Journal of Power Sources, 2006, 159, 454-458.	4.0	21
86	Electrochemical quartz crystal microbalance study on carbon oxides adsorption in the presence of electrosorbed hydrogen on Pd alloys with Pt and Rh. Electrochimica Acta, 2006, 51, 4728-4735.	2.6	10
87	Cyclic voltammetric behavior of Pd–Pt–Rh ternary alloys. Journal of Solid State Electrochemistry, 2005, 9, 1-9.	1.2	30
88	Dual mechanism of hydrogen desorption from palladium alloys postulated on the basis of cyclic voltammetric studies. Journal of Solid State Electrochemistry, 2004, 8, 411-415.	1.2	17
89	A quartz crystal microbalance study on a metallic nickel electrode. Journal of Solid State Electrochemistry, 2004, 8, 390-397.	1.2	24
90	Influence of adsorbed carbon dioxide on hydrogen electrosorption in palladium–platinum–rhodium alloys. Electrochimica Acta, 2004, 49, 3161-3167.	2.6	24

#	Article	IF	CITATIONS
91	Hydrogen insertion into Pd–Pt–Rh alloy limited volume electrodes (LVEs)â~†â~†Keynote Lecture Journal of Physics and Chemistry of Solids, 2004, 65, 523-528.	1.9	28
92	Electrochemical behaviour of barium metaplumbate as a lead carrier. Journal of Power Sources, 2004, 129, 326-329.	4.0	16
93	Hydrogen Electrosorption in Pdâ€Ptâ€Rh Alloys in the Presence of Adsorbed CO. Analytical Letters, 2004, 37, 967-978.	1.0	12
94	Investigation of hydrogen embrittlement of Sn–Al alloy during contact with water vapour. Journal of Solid State Electrochemistry, 2003, 7, 83-86.	1.2	4
95	Cathode modification in the Leclanché cell. Journal of Solid State Electrochemistry, 2003, 7, 118-121.	1.2	11
96	Electrosorption of hydrogen into palladium-gold alloys. Journal of Solid State Electrochemistry, 2003, 7, 69-76.	1.2	74
97	Temperature influence on hydrogen sorption in palladium limited-volume electrodes (Pd-LVE). Journal of Solid State Electrochemistry, 2003, 7, 321-326.	1.2	23
98	Electrochemical behavior of palladium–gold alloys. Electrochimica Acta, 2003, 48, 2435-2445.	2.6	77
99	New cathode mixture for the zinc–manganese dioxide cell. Journal of Power Sources, 2003, 114, 176-179.	4.0	12
100	Electrochemical behavior of lead alloys in sulfuric and phosphoric acid solutions. Journal of Power Sources, 2003, 113, 308-317.	4.0	27
101	Study of hydrogen electrosorption in Pd-Ni alloys by the quartz crystal microbalance. Journal of Solid State Electrochemistry, 2002, 7, 43-48.	1.2	18
102	Electrochemistry of multilayer electrodes RVCPaniPdPani. Synthetic Metals, 2001, 121, 1401-1402.	2.1	14
103	Isotope effects in α-PdH(D) as an instrument for diagnosing bulk defects. Journal of Solid State Electrochemistry, 2001, 5, 212-220.	1.2	14
104	Electrochemical behavior of metal hydrides. Journal of Solid State Electrochemistry, 2001, 5, 229-249.	1.2	265
105	Electrochemical preparation and characterization of electrodes modified with mixed hexacyanoferrates of nickel and palladium. Journal of Electroanalytical Chemistry, 2000, 487, 57-65.	1.9	83
106	The study of hydrogen sorption in palladium limited volume electrodes (Pd-LVE). Journal of Electroanalytical Chemistry, 2000, 492, 128-136.	1.9	58
107	Electrochemical behavior of lead in sulfuric acid solutions. Journal of Power Sources, 2000, 85, 49-55.	4.0	55
108	The study of electrochemical palladium behavior using the quartz crystal microbalance. Journal of Solid State Electrochemistry, 2000, 4, 273-278.	1.2	63

#	Article	IF	CITATIONS
109	Hydrogen electrosorption in Ni–Pd alloys. Journal of Electroanalytical Chemistry, 1999, 460, 30-37.	1.9	36
110	The study of hydrogen sorption in palladium limited volume electrodes (Pd-LVE). Journal of Electroanalytical Chemistry, 1999, 471, 190-195.	1.9	86
111	Electrochemical behavior of nickel deposited on reticulated vitreous carbon. Journal of Power Sources, 1999, 77, 28-33.	4.0	27
112	Study of electrochemical palladium behavior by the quartz crystal microbalance. I. Acidic Solutions. Journal of Solid State Electrochemistry, 1999, 3, 348-351.	1.2	31
113	Behavior of a nickel electrode in the presence of carbon monoxide. Journal of Solid State Electrochemistry, 1998, 2, 16-23.	1.2	39
114	The Electrochemical Behavior of Bunte Salts. Analytical Letters, 1997, 30, 2391-2408.	1.0	5
115	Electrochemical behavior of lead dioxide deposited on reticulated vitreous carbon (RVC). Journal of Power Sources, 1997, 64, 29-34.	4.0	60
116	Influence of cesium cations on hydrogen and deuterium electrosorption in palladium. Electrochimica Acta, 1997, 42, 81-86.	2.6	11
117	Electrochemical behavior of lead deposited on reticulated vitreous carbon. Journal of Electroanalytical Chemistry, 1996, 410, 55-60.	1.9	43
118	Influence of Rubidium Cations on Hydrogen and Deuterium Electrosorption in Palladium Analytical Letters, 1996, 29, 2549-2561.	1.0	10
119	Use of neutron activation analysis for the determination of cesium in Pd electrodes on Pt and Au matrices. Journal of Radioanalytical and Nuclear Chemistry, 1995, 199, 375-383.	0.7	10
120	Adsorption of Carbon Monoxide on Palladium Electrode from Alkaline Solutions. Analytical Letters, 1995, 28, 2547-2559.	1.0	14
121	Influence of lithium cations on hydrogen and deuterium electrosorption in palladium. Electrochimica Acta, 1994, 39, 431-436.	2.6	18
122	The adsorption of carbon oxides on a palladium electrode from acidic solution. Journal of Electroanalytical Chemistry, 1994, 379, 487-493.	1.9	76
123	The absorption of hydrogen and deuterium in thin palladium electrodes. Journal of Electroanalytical Chemistry, 1992, 322, 373-381.	1.9	54
124	Solvent effect on the rate of homogeneous electron exchange of the Eu(III)-Eu(II) system in water-DMF mixtures. Journal of Radioanalytical and Nuclear Chemistry, 1992, 165, 167-174.	0.7	0
125	The absorption of hydrogen and deuterium in thin palladium electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 316, 211-221.	0.3	103
126	Adsorption of 4,4′-bipyridyl on gold. Electrochimica Acta, 1990, 35, 591-594.	2.6	11

f

#	Article	IF	CITATIONS
127	The Comparative Study of "Adsorbed Co―Oxidation On the Rough and Smooth Pt Electrodes. Analytical Letters, 1989, 22, 1547-1553.	1.0	9
128	Kinetics of carbon monoxide adsorption on a rough rhodium electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 252, 189-195.	0.3	13
129	The Electrochemical Behavior in Aqueous Media of Conducting Polymers: II . The Insoluble Fractions Obtained on the Cu(II) Catalyzed Polymerization of (2,5â€Dibromoâ€3â€Group IV Substituted) Thiophenes. Journal of the Electrochemical Society, 1987, 134, 1158-1164.	1.3	24
130	Critical "nuances―in the synthesis of highly conductive undoped poly(3-substituted-2,5-thienylenes)containing cu(II). Journal of Polymer Science, Part C: Polymer Letters, 1986, 24, 103-104.	0.7	5
131	The Chargeâ€Discharge Properties of a Cu(II)â€Poly(thienylene) Cell in Aqueous Media. Journal of the Electrochemical Society, 1986, 133, 576-578.	1.3	6
132	Adsorption Study of CO ₂ on Reticulated Vitreous Carbon (RVC) Covered with Platinum. Analytical Letters, 1985, 18, 1717-1722.	1.0	11
133	The Comparative Study of Co Adsorption on Smooth and Rough Rhodium Electrodes. Analytical Letters, 1985, 18, 1465-1477.	1.0	14
134	The Electrochemical Behavior in Aqueous Media of Conducting Polymers: I: The Methanol Soluble Fraction Obtained on the Cu(II) Catalyzed Polymerization of 2,5-Dibromo-3-Methylthiphene. Analytical Letters, 1985, 18, 673-680.	1.0	4
135	The Electrochemical Behavior in Aqueous Media of Conducting Polymers. III: The Redox Reactions of Strongly Oxidizing Metal Cations on the Cu(II) Catalyzed Polymers of 3-Substituted-2,5-Dibromothiophene. Analytical Letters, 1985, 18, 2395-2398.	1.0	3
136	The effect of â€~water and transition metal ion doping' on the conductivity of poly(3-substituted) Tj ETQq0 (0 0 rgBT / 2.0	Overlock 10 ⁻
137	The Electrochemical Deposition of Conducting Poly(3â€Methylâ€2,5â€Thienylene) Films from Aqueous Media. Journal of the Electrochemical Society, 1985, 132, 2669-2672.	1.3	27
138	Voltammetric study of carbon monoxide and carbon dioxide adsorption on smooth and platinized platinum electrodes. The Journal of Physical Chemistry, 1985, 89, 365-369.	2.9	80
139	A radiotracer method for the study of ruthenium adsorption on polysulfur nitride, /SN/x. Journal of Radioanalytical and Nuclear Chemistry, 1984, 85, 173-180.	0.7	4
140	Mounting assembly for preparation of electrodes from totally insoluble conducting polymers. Analytical Chemistry, 1984, 56, 1039-1041.	3.2	4
141	Electrosorption of CO and CO ² on Pt-Rh Alloy Electrodes. Analytical Letters, 1984, 17, 2175-2181.	1.0	17
142	The study of electrode processes of sulphur dioxide on platinized electrode by the radiochemical method. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 132, 263-271.	0.3	26
143	The adsorption of chlorobenzene on the gold electrode. Electrochimica Acta, 1980, 25, 1313-1316.	2.6	7
144	Characteristics of thin-layer cells with Nafion separators. Analytical Chemistry, 1980, 52, 1010-1013.	3.2	17

#	Article	IF	CITATIONS
145	The Interaction of Oxygen with Polythiozyl, (SN) _x , Electrodes. Analytical Letters, 1979, 12, 1089-1094.	1.0	5
146	Electrochemical reduction of CO2 and oxidation of adsorbed species on the rhodium electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 100, 781-790.	0.3	32
147	Thin-layer cell for routine applications. Analytical Chemistry, 1979, 51, 1328-1329.	3.2	15
148	The adsorption of carbon monoxide on a platinum electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1978, 91, 47-53.	0.3	40
149	Application of the radiotracer method for the study of electrosorption of carbon dioxide on platinum. The International Journal of Applied Radiation and Isotopes, 1974, 25, 295-300.	0.7	30
150	Kinetics of carbon dioxide adsorption on a platinum electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1974, 55, 391-397.	0.3	95