Masayoshi Hashimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4756247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification and molecular dissection of broad-spectrum recessive plant virus resistance genes. Journal of General Plant Pathology, 2021, 87, 413-414.	1.0	Ο
2	A fungal powdery mildew pathogen induces extensive local and marginal systemic changes in the <scp><i>Arabidopsis thaliana</i></scp> microbiota. Environmental Microbiology, 2021, 23, 6292-6308.	3.8	12
3	Root-Secreted Coumarins and the Microbiota Interact to Improve Iron Nutrition in Arabidopsis. Cell Host and Microbe, 2020, 28, 825-837.e6.	11.0	199
4	Intraâ€strain biological and epidemiological characterization of plum pox virus. Molecular Plant Pathology, 2020, 21, 475-488.	4.2	11
5	A gnotobiotic growth assay for Arabidopsis root microbiota reconstitution under iron limitation. STAR Protocols, 2020, 1, 100226.	1.2	4
6	Analysis of Antiviral Resistance Signaling Pathways by Virus-Induced Gene Silencing in Nicotiana benthamiana. Methods in Molecular Biology, 2019, 2028, 85-95.	0.9	1
7	Transfection of Protoplasts Prepared from Arabidopsis thaliana Leaves for Plant Virus Research. Methods in Molecular Biology, 2019, 2028, 145-151.	0.9	2
8	Functional conservation of EXA1 among diverse plant species for the infection by a family of plant viruses. Scientific Reports, 2019, 9, 5958.	3.3	14
9	Nâ€terminal region of cysteineâ€rich protein (CRP) in carlaviruses is involved in the determination of symptom types. Molecular Plant Pathology, 2018, 19, 180-190.	4.2	29
10	Comprehensive screening of antimicrobials to control phytoplasma diseases using an in vitro plant–phytoplasma co-culture system. Microbiology (United Kingdom), 2018, 164, 1048-1058.	1.8	12
11	Deficiency of the eIF4E isoform nCBP limits the cell-to-cell movement of a plant virus encoding triple-gene-block proteins in Arabidopsis thaliana. Scientific Reports, 2017, 7, 39678.	3.3	23
12	Dual targeting of a virus movement protein to ER and plasma membrane subdomains is essential for plasmodesmata localization. PLoS Pathogens, 2017, 13, e1006463.	4.7	26
13	Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors. Frontiers in Microbiology, 2016, 7, 1695.	3.5	137
14	Complete Genome Sequences of Two Hydrangea Ringspot Virus Isolates from Japan. Genome Announcements, 2016, 4, .	0.8	4
15	EXA1, a GYF domain protein, is responsible for lossâ€ofâ€susceptibility to plantago asiatica mosaic virus in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 88, 120-131.	5.7	39
16	First report of a Neofusicoccum sp. causing stem-end rot of mango. Journal of General Plant Pathology, 2016, 82, 314-317.	1.0	4
17	Complete Genome Sequence of a Japanese Isolate of <i>Daphne virus S</i> . Cytologia, 2015, 80, 327-330.	0.6	1
18	Cell Death Triggered by a Putative Amphipathic Helix of <i>Radish mosaic virus</i> Helicase Protein Is Tightly Correlated With Host Membrane Modification. Molecular Plant-Microbe Interactions, 2015, 28, 675-688.	2.6	30

Μαδαγοςηι Ηασηιμοτο

#	Article	IF	CITATIONS
19	Rapid detection of fig mosaic virus using reverse transcription loop-mediated isothermal amplification. Journal of General Plant Pathology, 2015, 81, 382-389.	1.0	10
20	Nucleocapsid Protein from Fig Mosaic Virus Forms Cytoplasmic Agglomerates That Are Hauled by Endoplasmic Reticulum Streaming. Journal of Virology, 2015, 89, 480-491.	3.4	36
21	Passive virus movements with organelle dynamics. Oncotarget, 2015, 6, 30437-30438.	1.8	Ο
22	In Planta Recognition of a Double-Stranded RNA Synthesis Protein Complex by a Potexviral RNA Silencing Suppressor Â. Plant Cell, 2014, 26, 2168-2183.	6.6	68
23	Development of an on-site plum pox virus detection kit based on immunochromatography. Journal of General Plant Pathology, 2014, 80, 176-183.	1.0	23
24	First report of tomato chlorotic dwarf viroid isolated from symptomless petunia plants (Petunia spp.) in Japan. Journal of General Plant Pathology, 2013, 79, 214-216.	1.0	16
25	Fig mosaic emaravirus p4 protein is involved in cell-to-cell movement. Journal of General Virology, 2013, 94, 682-686.	2.9	42
26	Identification of three MAPKKKs forming a linear signaling pathway leading to programmed cell death in Nicotiana benthamiana. BMC Plant Biology, 2012, 12, 103.	3.6	47
27	Identification and characterization of two novel genomic RNA segments of fig mosaic virus, RNA5 and RNA6. Journal of General Virology, 2012, 93, 1612-1619.	2.9	40
28	First report of fig mosaic virus infecting common fig (Ficus carica) in Japan. Journal of General Plant Pathology, 2012, 78, 136-139.	1.0	19
29	First report of Helleborus net necrosis virus isolated from hellebores with black death syndrome in Japan. Journal of General Plant Pathology, 2011, 77, 269-272.	1.0	6
30	First report of plum pox virus infecting Japanese apricot (Prunus mume Sieb. et Zucc.) in Japan. Journal of General Plant Pathology, 2010, 76, 229-231.	1.0	32
31	Variability in the level of RNA silencing suppression caused by triple gene block protein 1 (TCBp1) from various potexviruses during infection. Journal of General Virology, 2009, 90, 1014-1024.	2.9	67
32	Complete nucleotide sequence and genome organization of butterbur mosaic virus. Archives of Virology, 2009, 154, 1955-1958.	2.1	5