Yuhua Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4756125/publications.pdf Version: 2024-02-01

Унына Хн

#	Article	IF	CITATIONS
1	Baseband unit cloud interconnection enabled by flexible grid optical networks with software defined elasticity. IEEE Communications Magazine, 2015, 53, 90-98.	6.1	651
2	Cognitive Internet of Things: A New Paradigm Beyond Connection. IEEE Internet of Things Journal, 2014, 1, 129-143.	8.7	434
3	Opportunistic Spectrum Access in Cognitive Radio Networks: Global Optimization Using Local Interaction Games. IEEE Journal on Selected Topics in Signal Processing, 2012, 6, 180-194.	10.8	273
4	Opportunistic Spectrum Access in Unknown Dynamic Environment: A Game-Theoretic Stochastic Learning Solution. IEEE Transactions on Wireless Communications, 2012, 11, 1380-1391.	9.2	229
5	Optimal power allocation and user scheduling in multicell networks: Base station cooperation using a game-theoretic approach. IEEE Transactions on Wireless Communications, 2014, 13, 6928-6942.	9.2	201
6	Decision-Theoretic Distributed Channel Selection for Opportunistic Spectrum Access: Strategies, Challenges and Solutions. IEEE Communications Surveys and Tutorials, 2013, 15, 1689-1713.	39.4	196
7	Energy-efficient multi-UAV coverage deployment in UAV networks: A game-theoretic framework. China Communications, 2018, 15, 194-209.	3.2	170
8	Anti-Jamming Communications Using Spectrum Waterfall: A Deep Reinforcement Learning Approach. IEEE Communications Letters, 2018, 22, 998-1001.	4.1	151
9	Stackelberg Game Approaches for Anti-Jamming Defence in Wireless Networks. IEEE Wireless Communications, 2018, 25, 120-128.	9.0	109
10	Distributed Channel Selection in Time-Varying Radio Environment: Interference Mitigation Game With Uncoupled Stochastic Learning. IEEE Transactions on Vehicular Technology, 2013, 62, 4524-4538.	6.3	98
11	Opportunistic Spectrum Access with Spatial Reuse: Graphical Game and Uncoupled Learning Solutions. IEEE Transactions on Wireless Communications, 2013, 12, 4814-4826.	9.2	79
12	User-Demand-Aware Wireless Network Selection: A Localized Cooperation Approach. IEEE Transactions on Vehicular Technology, 2014, 63, 4492-4507.	6.3	75
13	A One-Leader Multi-Follower Bayesian-Stackelberg Game for Anti-Jamming Transmission in UAV Communication Networks. IEEE Access, 2018, 6, 21697-21709.	4.2	75
14	Opportunistic UAV Utilization in Wireless Networks: Motivations, Applications, and Challenges. IEEE Communications Magazine, 2020, 58, 62-68.	6.1	75
15	Task-Driven Relay Assignment in Distributed UAV Communication Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 11003-11017.	6.3	69
16	Self-Organizing Relay Selection in UAV Communication Networks: A Matching Game Perspective. IEEE Wireless Communications, 2019, 26, 102-110.	9.0	68
17	Dynamic Spectrum Anti-Jamming Communications: Challenges and Opportunities. IEEE Communications Magazine, 2020, 58, 79-85.	6.1	66
18	Opportunistic Spectrum Access Using Partially Overlapping Channels: Graphical Game and Uncoupled Learning. IEEE Transactions on Communications, 2013, 61, 3906-3918.	7.8	64

#	Article	lF	CITATIONS
19	A Game-Theoretic Learning Approach for Anti-Jamming Dynamic Spectrum Access in Dense Wireless Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 1646-1656.	6.3	63
20	Dynamic Spectrum Access in Time-Varying Environment: Distributed Learning Beyond Expectation Optimization. IEEE Transactions on Communications, 2017, 65, 5305-5318.	7.8	61
21	Interference-Aware Online Distributed Channel Selection for Multicluster FANET: A Potential Game Approach. IEEE Transactions on Vehicular Technology, 2019, 68, 3792-3804.	6.3	61
22	Joint Task Assignment and Spectrum Allocation in Heterogeneous UAV Communication Networks: A Coalition Formation Game-Theoretic Approach. IEEE Transactions on Wireless Communications, 2021, 20, 440-452.	9.2	59
23	Stochastic Game-Theoretic Spectrum Access in Distributed and Dynamic Environment. IEEE Transactions on Vehicular Technology, 2015, 64, 4807-4820.	6.3	58
24	A Hierarchical Learning Solution for Anti-Jamming Stackelberg Game With Discrete Power Strategies. IEEE Wireless Communications Letters, 2017, 6, 818-821.	5.0	58
25	Distributed Channel Selection for Interference Mitigation in Dynamic Environment: A Game-Theoretic Stochastic Learning Solution. IEEE Transactions on Vehicular Technology, 2014, 63, 4757-4762.	6.3	54
26	Exploiting User Demand Diversity in Heterogeneous Wireless Networks. IEEE Transactions on Wireless Communications, 2015, 14, 4142-4155.	9.2	47
27	A game-theoretic perspective on self-organizing optimization for cognitive small cells. , 2015, 53, 100-108.		47
28	Power Control in Relay-Assisted Anti-Jamming Systems: A Bayesian Three-Layer Stackelberg Game Approach. IEEE Access, 2019, 7, 14623-14636.	4.2	45
29	A hierarchical learning approach to anti-jamming channel selection strategies. Wireless Networks, 2019, 25, 201-213.	3.0	37
30	Distributed Demand-Aware Channel-Slot Selection for Multi-UAV Networks: A Game-Theoretic Learning Approach. IEEE Access, 2018, 6, 14799-14811.	4.2	35
31	Pattern-Aware Intelligent Anti-Jamming Communication: A Sequential Deep Reinforcement Learning Approach. IEEE Access, 2019, 7, 169204-169216.	4.2	35
32	Energy-Efficient Resource Allocation for Energy Harvesting-Based Device-to-Device Communication. IEEE Transactions on Vehicular Technology, 2019, 68, 509-524.	6.3	32
33	Database-Assisted Spectrum Access in Dynamic Networks: A Distributed Learning Solution. IEEE Access, 2015, 3, 1071-1078.	4.2	30
34	Context Awareness Group Buying in D2D Networks: A Coalition Formation Game-Theoretic Approach. IEEE Transactions on Vehicular Technology, 2018, 67, 12259-12272.	6.3	30
35	A heterogeneous information fusion deep reinforcement learning for intelligent frequency selection of HF communication. China Communications, 2018, 15, 73-84.	3.2	30
36	A Multi-Domain Anti-Jamming Defense Scheme in Heterogeneous Wireless Networks. IEEE Access, 2018, 6, 40177-40188.	4.2	30

#	Article	IF	CITATIONS
37	A Multi-Leader One-Follower Stackelberg Game Approach for Cooperative Anti-Jamming: No Pains, No Gains. IEEE Communications Letters, 2018, 22, 1680-1683.	4.1	30
38	QoE and Energy Aware Resource Allocation in Small Cell Networks With Power Selection, Load Management, and Channel Allocation. IEEE Transactions on Vehicular Technology, 2017, 66, 7461-7473.	6.3	29
39	Opportunistic Data Collection in Cognitive Wireless Sensor Networks: Air–Ground Collaborative Online Planning. IEEE Internet of Things Journal, 2020, 7, 8837-8851.	8.7	29
40	Optimal distributed interference avoidance: potential game and learning. Transactions on Emerging Telecommunications Technologies, 2012, 23, 317-326.	3.9	28
41	VERACITY: Overlapping Coalition Formation-Based Double Auction for Heterogeneous Demand and Spectrum Reusability. IEEE Journal on Selected Areas in Communications, 2016, 34, 2690-2705.	14.0	28
42	Distributed TOA-Based Positioning in Wireless Sensor Networks: A Potential Game Approach. IEEE Communications Letters, 2018, 22, 316-319.	4.1	28
43	Demandâ€aware resource allocation for ultraâ€dense small cell networks: an interferenceâ€separation clusteringâ€based solution. Transactions on Emerging Telecommunications Technologies, 2016, 27, 1071-1086.	3.9	27
44	Context-Aware Group Buying in Ultra-Dense Small Cell Networks: Unity Is Strength. IEEE Wireless Communications, 2019, 26, 118-125.	9.0	27
45	Load-Aware Dynamic Spectrum Access for Small-Cell Networks: A Graphical Game Approach. IEEE Transactions on Vehicular Technology, 2016, 65, 8794-8800.	6.3	26
46	Robust Multiuser Sequential Channel Sensing and Access in Dynamic Cognitive Radio Networks: Potential Games and Stochastic Learning. IEEE Transactions on Vehicular Technology, 2015, 64, 3594-3607.	6.3	25
47	Opportunistic Utilization of Dynamic Multi-UAV in Device-to-Device Communication Networks. IEEE Transactions on Cognitive Communications and Networking, 2020, 6, 1069-1083.	7.9	25
48	Data-Driven Deployment and Cooperative Self-Organization in Ultra-Dense Small Cell Networks. IEEE Access, 2018, 6, 22839-22848.	4.2	24
49	Convert Harm Into Benefit: A Coordination-Learning Based Dynamic Spectrum Anti-Jamming Approach. IEEE Transactions on Vehicular Technology, 2020, 69, 13018-13032.	6.3	24
50	Demand-Aware Multichannel Opportunistic Spectrum Access: A Local Interaction Game Approach With Reduced Information Exchange. IEEE Transactions on Vehicular Technology, 2015, 64, 4899-4904.	6.3	23
51	Distributed Channel Access for Device-to-Device Communications: A Hypergraph-Based Learning Solution. IEEE Communications Letters, 2017, 21, 180-183.	4.1	23
52	Self-Organizing Slot Access for Neighboring Cooperation in UAV Swarms. IEEE Transactions on Wireless Communications, 2020, 19, 2800-2812.	9.2	23
53	A Reinforcement Learning Approach for Dynamic Spectrum Anti-jamming in Fading Environment. , 2018, ,		21
54	A Game-Theoretic Approach for Optimal Distributed Cooperative Hybrid Caching in D2D Networks. IEEE Wireless Communications Letters, 2018, 7, 324-327.	5.0	20

#	Article	IF	CITATIONS
55	Opportunistic Mobility Utilization in Flying Ad-Hoc Networks: A Dynamic Matching Approach. IEEE Communications Letters, 2019, 23, 728-731.	4.1	20
56	A Multi-Leader Multi-Follower Stackelberg Game for Coalition-Based UAV MEC Networks. IEEE Wireless Communications Letters, 2021, 10, 2350-2354.	5.0	20
57	Directed-Hypergraph-Based Channel Allocation for Ultradense Cloud D2D Communications With Asymmetric Interference. IEEE Transactions on Vehicular Technology, 2018, 67, 7712-7718.	6.3	16
58	Distributed ABS-Slot Access in Dense Heterogeneous Networks: A Potential Game Approach With Generalized Interference Model. IEEE Access, 2017, 5, 94-104.	4.2	15
59	Dynamic Spectrum Anti-Jamming in Broadband Communications: A Hierarchical Deep Reinforcement Learning Approach. IEEE Wireless Communications Letters, 2020, 9, 1616-1619.	5.0	15
60	Spectrum Allocation for Task-Driven UAV Communication Networks Exploiting Game Theory. IEEE Wireless Communications, 2021, 28, 174-181.	9.0	15
61	Machine Learning Empowered Spectrum Sharing in Intelligent Unmanned Swarm Communication Systems: Challenges, Requirements and Solutions. IEEE Access, 2020, 8, 89839-89849.	4.2	14
62	Distributed relay selection for heterogeneous UAV communication networks using a many-to-many matching game without substitutability. , 2017, , .		13
63	A Joint Game-Theoretic Interference Coordination Approach in Uplink Multi-Cell OFDMA Networks. Wireless Personal Communications, 2015, 80, 1203-1215.	2.7	12
64	Interference-Aware Spectrum Access Self-Organization: A Weighted Graph Game Perspective. IEEE Systems Journal, 2018, 12, 3250-3259.	4.6	12
65	High frequency communication network with diversity: System structure and key enabling techniques. China Communications, 2018, 15, 46-59.	3.2	11
66	Opportunistic Data Ferrying in UAV-Assisted D2D Networks: A Dynamic Hierarchical Game. , 2019, , .		11
67	Power control games for multi-user anti-jamming communications. Wireless Networks, 2019, 25, 2365-2374.	3.0	11
68	Social welfare maximization for SRSNs using bio-inspired community cooperation mechanism. Science Bulletin, 2012, 57, 125-131.	1.7	10
69	Distributed satisfactionâ€aware relay assignment: a novel matchingâ€game approach. Transactions on Emerging Telecommunications Technologies, 2016, 27, 1087-1096.	3.9	10
70	Design and implementation of reinforcement learningâ€based intelligent jamming system. IET Communications, 2020, 14, 3231-3238.	2.2	10
71	Mean Field Reinforcement Learning Based Anti-Jamming Communications for Ultra-Dense Internet of Things in 6G. , 2020, , .		10
72	Resource Allocation for D2D Wireless Networks With Asymmetric Social Weighted Graph. IEEE Communications Letters, 2017, 21, 2085-2088.	4.1	9

#	Article	IF	CITATIONS
73	Joint Computation Offloading and Variable-width Channel Access Optimization in UAV Swarms. , 2020, ,		9
74	Effective capacity region of two-user opportunistic spectrum access. Science China Information Sciences, 2011, 54, 1928-1937.	4.3	8
75	Decodeâ€andâ€forward twoâ€way relaying protocol with one retransmission. International Journal of Communication Systems, 2014, 27, 776-793.	2.5	8
76	Selfâ€organising multiuser matching in cellular networks: a scoreâ€based mutually beneficial approach. IET Communications, 2016, 10, 1928-1937.	2.2	8
77	Distributed Channel Access, Relay Selection and Time Assignment for QoE-Aware Relay Networks. IEEE Access, 2018, 6, 28790-28800.	4.2	8
78	Primary-User-Friendly Dynamic Spectrum Anti-Jamming Access: A GAN-Enhanced Deep Reinforcement Learning Approach. IEEE Wireless Communications Letters, 2022, 11, 258-262.	5.0	8
79	Energyâ€efficient exploration and exploitation of multichannel diversity in spectrum sharing systems. Transactions on Emerging Telecommunications Technologies, 2012, 23, 701-706.	3.9	7
80	Performance analysis of time division broadcast protocol with incremental relaying and symmetric users. International Journal of Communication Systems, 2013, 26, 1419-1432.	2.5	7
81	Locally cooperative trafficâ€offloading in multiâ€mode small cell networks via potential games. Transactions on Emerging Telecommunications Technologies, 2016, 27, 968-981.	3.9	7
82	Distributed Power Allocation for Wireless Sensor Network Localization: A Potential Game Approach. Sensors, 2018, 18, 1480.	3.8	7
83	Joint Power and Trajectory Optimization in UAV Anti-Jamming Communication Networks. , 2019, , .		7
84	An Anti-Jamming Hierarchical Optimization Approach in Relay Communication System via Stackelberg Game. Applied Sciences (Switzerland), 2019, 9, 3348.	2.5	7
85	Joint Channel and Link Selection in Formation-Keeping UAV Networks: A Two-Way Consensus Game. IEEE Transactions on Mobile Computing, 2022, 21, 2861-2875.	5.8	7
86	A Game-Theoretic Approach to Exploit Partially Overlapping Channels in Dynamic and Distributed Networks. IEEE Communications Letters, 2014, 18, 2201-2204.	4.1	6
87	Self-Organizing Hit Avoidance in Distributed Frequency Hopping Multiple Access Networks. IEEE Access, 2017, 5, 26614-26622.	4.2	6
88	Opportunistic channel access with repetition time diversity and switching cost: a block multi-armed bandit approach. Wireless Networks, 2018, 24, 1683-1697.	3.0	6
89	Cognitive Neighbor Discovery With Directional Antennas in Self-Organizing IoT Networks. IEEE Internet of Things Journal, 2021, 8, 6865-6877.	8.7	6
90	Distributed Joint Optimization of Deployment, Computation Offloading and Resource Allocation in Coalition-based UAV Swarms. , 2020, , .		6

#	Article	IF	CITATIONS
91	A Self-Organized Approach for Neighboring Message Interaction in UAV Swarms. , 2019, , .		5
92	A Q-Learning-Based Channel Selection and Data Scheduling Approach for High-Frequency Communications in Jamming Environment. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2019, , 145-160.	0.3	5
93	A Stackelberg Incentive Mechanism for Wireless Federated Learning With Differential Privacy. IEEE Wireless Communications Letters, 2022, 11, 1805-1809.	5.0	5
94	Diversity and Multiplexing Tradeoff Analysis of Fractional Cooperative Networks. Frequenz, 2011, 65, .	0.9	4
95	Outage analysis of dualâ€hop Alamouti transmission with channel estimation error. Transactions on Emerging Telecommunications Technologies, 2012, 23, 393-398.	3.9	4
96	Better Late Than Never: GAN-Enhanced Dynamic Anti-Jamming Spectrum Access With Incomplete Sensing Information. IEEE Wireless Communications Letters, 2021, 10, 1800-1804.	5.0	4
97	Energy-Efficient Channel Access and Data Offloading Against Dynamic Jamming Attacks. IEEE Transactions on Green Communications and Networking, 2021, 5, 1734-1746.	5.5	4
98	Play it by Ear: Context-Aware Distributed Coordinated Anti-Jamming Channel Access. IEEE Transactions on Information Forensics and Security, 2021, 16, 5279-5293.	6.9	4
99	A game theoretic learning solution for distributed relay selection on throughput optimization. Wireless Networks, 2017, 23, 1757-1766.	3.0	3
100	A distributed anti-jamming channel selection algorithm for interference mitigation-based wireless networks. , 2017, , .		3
101	Joint Channel Selection and Data Scheduling in HF Jamming Environment: An Interference-Aware Reinforcement Learning Approach. IEEE Access, 2019, 7, 157072-157084.	4.2	3
102	Performance Analysis of Opportunistic and Incremental Relaying Coded Cooperation: Impact of Exchange Ratio. Frequenz, 2011, 65, .	0.9	2
103	Diversity-multiplexing tradeoff of coded cooperation with incremental relaying. , 2012, , .		2
104	When to offload in two-tier smallcell networks: a Stackelberg game approach with pre-offloading-decision. Wireless Networks, 2017, 23, 2499-2508.	3.0	2
105	LYRIC: Local Recall-Based Dynamic Double Spectrum Auction Mechanism With Heterogeneous-Demand Secondary Users. IEEE Access, 2017, 5, 24446-24456.	4.2	2
106	Leveraging partially overlapping channels for intra- and inter-coalition communication in cooperative UAV swarms. Science China Information Sciences, 2021, 64, 1.	4.3	2
107	Uncertain Preference Matching-Based Relay Selection and Position Adjustment in Dynamic UAV Systems. , 2020, , .		2
108	Game-Theoretic MAC-Layer Interference Coordination with Orthogonal Channels. Springer Briefs in Electrical and Computer Engineering, 2016, , 29-51.	0.5	1

#	Article	IF	CITATIONS
109	Distributed Multichannel Access in High-Frequency Diversity Networks: A Multi-Agent Learning Approach With Correlated Equilibrium. IEEE Access, 2019, 7, 85581-85593.	4.2	1
110	Performance of Dynamic Time Division Broadcast Protocol with Rateless Coding. Applied Sciences (Switzerland), 2020, 10, 86.	2.5	1
111	Context-aware Coordinated Anti-jamming Communications: A Multi-pattern Stochastic Learning Approach. , 2021, , .		1
112	Finite-SNR diversity-multiplexing tradeoff analysis of relay network with two antennas at the source in Rayleigh Fading Channels. , 2012, , .		0
113	Distributed multiuser opportunistic spectrum access: A "win-stay loss-randomize" strategy. , 2013, , .		0
114	Multiuser Opportunistic Spectrum Access in cognitive radio networks: An optimal stopping approach with Spectrum Partition. , 2013, , .		0
115	Distributed Interference Mitigation in Time-Varying Radio Environment. Springer Briefs in Electrical and Computer Engineering, 2016, , 11-27.	0.5	0
116	Game-Theoretic MAC-Layer Interference Coordination with Partially Overlapping Channels. Springer Briefs in Electrical and Computer Engineering, 2016, , 53-71.	0.5	0
117	An Incentive Mechanism Design View for Hybrid Access in Small Cell Networks: Keeping a Secret Is Not Smart. IEEE Systems Journal, 2019, 13, 542-553.	4.6	0
118	QoE-oriented partially overlapping channel access in wireless networks: a game-theoretic learning approach. Wireless Networks, 2020, 26, 983-993.	3.0	0
119	A USRP-Based Testbed of Multi-agent Reinforcement Learning for Dynamic Spectrum Anti-Jamming. Smart Innovation, Systems and Technologies, 2021, , 29-38.	0.6	0
120	Proceed From Known to Unknown: Jamming Pattern Recognition Under Open-Set Setting. IEEE Wireless Communications Letters, 2022, 11, 693-697.	5.0	0