
Melinda Ann Brindley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4755587/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature, 2022, 603, 693-699.	13.7	460
2	Modulation of immunosuppressant drug treatment to improve SARS-CoV-2 vaccine efficacy in mice. Vaccine, 2022, 40, 854-861.	1.7	5
3	Scrambled or flipped: 5 facts about how cellular phosphatidylserine localization can mediate viral replication. PLoS Pathogens, 2022, 18, e1010352.	2.1	3
4	Systematic comparison between BNT162b2 and CoronaVac in the seroprotection against SARS-CoV-2 Alpha, Beta, Gamma, and Delta variants. Journal of Infection, 2022, 84, e55-e57.	1.7	2
5	Untargeted Lipidomics of Vesicular Stomatitis Virus-Infected Cells and Viral Particles. Viruses, 2022, 14, 3.	1.5	6
6	Temperate Conditions Limit Zika Virus Genome Replication. Journal of Virology, 2022, 96, e0016522.	1.5	3
7	Cell surface glycan engineering reveals that matriglycan alone can recapitulate dystroglycan binding and function. Nature Communications, 2022, 13, .	5.8	23
8	mSphere of Influence: Apoptotic Mimicry and Virus Entry. MSphere, 2021, 6, .	1.3	2
9	Protection of K18-hACE2 mice and ferrets against SARS-CoV-2 challenge by a single-dose mucosal immunization with a parainfluenza virus 5–based COVID-19 vaccine. Science Advances, 2021, 7, .	4.7	60
10	Ebola Virus Requires Phosphatidylserine Scrambling Activity for Efficient Budding and Optimal Infectivity. Journal of Virology, 2021, 95, e0116521.	1.5	17
11	Host and viral determinants for efficient SARS-CoV-2 infection of the human lung. Nature Communications, 2021, 12, 134.	5.8	112
12	Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. Cell Host and Microbe, 2020, 28, 586-601.e6.	5.1	334
13	SARS-CoV-2 Spike Alterations Enhance Pseudoparticle Titers and Replication-Competent VSV-SARS-CoV-2 Virus. Viruses, 2020, 12, 1465.	1.5	35
14	Monitoring Viral Entry in Real-Time Using a Luciferase Recombinant Vesicular Stomatitis Virus Producing SARS-CoV-2, EBOV, LASV, CHIKV, and VSV Glycoproteins. Viruses, 2020, 12, 1457.	1.5	14
15	Temperature Dramatically Shapes Mosquito Gene Expression With Consequences for Mosquito–Zika Virus Interactions. Frontiers in Microbiology, 2020, 11, 901.	1.5	30
16	Ebola Virus Requires Phosphatidylserine Scrambling Activity for Efficient Budding and Optimal Infectivity. Proceedings (mdpi), 2020, 50, .	0.2	1
17	Identification of Residues in Lassa Virus Glycoprotein Subunit 2 That Are Critical for Protein Function. Pathogens, 2019, 8, 1.	1.2	62
18	The Oxysterol 7-Ketocholesterol Reduces Zika Virus Titers in Vero Cells and Human Neurons. Viruses, 2019, 11, 20.	1.5	61

Melinda Ann Brindley

#	Article	IF	CITATIONS
19	Promotion of virus assembly and organization by the measles virus matrix protein. Nature Communications, 2018, 9, 1736.	5.8	114
20	Strain-Dependent Consequences of Zika Virus Infection and Differential Impact on Neural Development. Viruses, 2018, 10, 550.	1.5	36
21	Carry-over effects of urban larval environments on the transmission potential of dengue-2 virus. Parasites and Vectors, 2018, 11, 426.	1.0	22
22	Establishing Mouse Models for Zika Virus-induced Neurological Disorders Using Intracerebral Injection Strategies: Embryonic, Neonatal, and Adult. Journal of Visualized Experiments, 2018, , .	0.2	3
23	Estimating the effects of variation in viremia on mosquito susceptibility, infectiousness, and R0 of Zika in Aedes aegypti. PLoS Neglected Tropical Diseases, 2018, 12, e0006733.	1.3	44
24	Temperature drives Zika virus transmission: evidence from empirical and mathematical models. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180795.	1.2	151
25	The African Zika virus MR-766 is more virulent and causes more severe brain damage than current Asian lineage and Dengue virus. Development (Cambridge), 2017, 144, 4114-4124.	1.2	76
26	Mutational Analysis of Lassa Virus Glycoprotein Highlights Regions Required for Alpha-Dystroglycan Utilization. Journal of Virology, 2017, 91, .	1.5	30
27	The Near-to-Native-State Architecture of Measles Virus Assembly Sites and Isolated Measles Virus Particles. Microscopy and Microanalysis, 2017, 23, 1228-1229.	0.2	0
28	Zika Virus Exhibits Lineage-Specific Phenotypes in Cell Culture, in Aedes aegypti Mosquitoes, and in an Embryo Model. Viruses, 2017, 9, 383.	1.5	46
29	Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage. Development (Cambridge), 2016, 143, 4127-4136.	1.2	154
30	Zika Virus Induced Mortality and Microcephaly in Chicken Embryos. Stem Cells and Development, 2016, 25, 1691-1697.	1.1	84
31	Measles Virus Glycoprotein Complexes Preassemble Intracellularly and Relax during Transport to the Cell Surface in Preparation for Fusion. Journal of Virology, 2015, 89, 1230-1241.	1.5	25
32	Efficient replication of a paramyxovirus independent of full zippering of the fusion protein six-helix bundle domain. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3795-E3804.	3.3	16
33	A Stabilized Headless Measles Virus Attachment Protein Stalk Efficiently Triggers Membrane Fusion. Journal of Virology, 2013, 87, 11693-11703.	1.5	62
34	The Receptor-Binding Site of the Measles Virus Hemagglutinin Protein Itself Constitutes a Conserved Neutralizing Epitope. Journal of Virology, 2013, 87, 3583-3586.	1.5	35
35	Functional and Structural Characterization of Neutralizing Epitopes of Measles Virus Hemagglutinin Protein. Journal of Virology, 2013, 87, 666-675.	1.5	45
36	Mechanism for Active Membrane Fusion Triggering by Morbillivirus Attachment Protein. Journal of Virology, 2013, 87, 314-326.	1.5	54

#	Article	IF	CITATIONS
37	Structural Rearrangements of the Central Region of the Morbillivirus Attachment Protein Stalk Domain Trigger F Protein Refolding for Membrane Fusion. Journal of Biological Chemistry, 2012, 287, 16324-16334.	1.6	63
38	Triggering the measles virus membrane fusion machinery. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3018-27.	3.3	63
39	Tyrosine kinase receptor Axl enhances entry of Zaire ebolavirus without direct interactions with the viral glycoprotein. Virology, 2011, 415, 83-94.	1.1	105
40	T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for <i>Zaire Ebolavirus</i> and <i>Lake Victoria Marburgvirus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8426-8431.	3.3	330
41	Structural and Mechanistic Studies of Measles Virus Illuminate Paramyxovirus Entry. PLoS Pathogens, 2011, 7, e1002058.	2.1	75
42	Blue Native PAGE and Biomolecular Complementation Reveal a Tetrameric or Higher-Order Oligomer Organization of the Physiological Measles Virus Attachment Protein H. Journal of Virology, 2010, 84, 12174-12184.	1.5	52
43	Rho GTPases Modulate Entry of Ebola Virus and Vesicular Stomatitis Virus Pseudotyped Vectors. Journal of Virology, 2009, 83, 10176-10186.	1.5	79
44	Probing the Spatial Organization of Measles Virus Fusion Complexes. Journal of Virology, 2009, 83, 10480-10493.	1.5	78
45	Inhibition of lentivirus replication by aqueous extracts of Prunella vulgaris. Virology Journal, 2009, 6, 8.	1.4	24
46	Equine Infectious Anemia Virus Entry Occurs through Clathrin-Mediated Endocytosis. Journal of Virology, 2008, 82, 1628-1637.	1.5	27
47	An Equine Infectious Anemia Virus Variant Superinfects Cells through Novel Receptor Interactions. Journal of Virology, 2008, 82, 9425-9432.	1.5	8
48	Development and Characterization of an Equine Infectious Anemia Virus Env-Pseudotyped Reporter Virus. Vaccine Journal, 2008, 15, 1138-1140.	3.2	9
49	Ebola Virus Glycoprotein 1: Identification of Residues Important for Binding and Postbinding Events. Journal of Virology, 2007, 81, 7702-7709.	1.5	81
50	Endocytosis and a Low-pH Step Are Required for Productive Entry of Equine Infectious Anemia Virus. Journal of Virology, 2005, 79, 14482-14488.	1.5	30