
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4755255/publications.pdf Version: 2024-02-01



CHUNRIAOLI

| #  | Article                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Coexisting Hidden Attractors in a 4-D Simplified Lorenz System. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1450034. | 0.7 | 238       |
| 2  | Variable-boostable chaotic flows. Optik, 2016, 127, 10389-10398.                                                                                                       | 1.4 | 175       |
| 3  | Multistability in the Lorenz System: A Broken Butterfly. International Journal of Bifurcation and<br>Chaos in Applied Sciences and Engineering, 2014, 24, 1450131.     | 0.7 | 163       |
| 4  | Infinite Multistability in a Self-Reproducing Chaotic System. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750160.   | 0.7 | 152       |
| 5  | Simple chaotic 3D flows with surfaces of equilibria. Nonlinear Dynamics, 2016, 86, 1349-1358.                                                                          | 2.7 | 126       |
| 6  | Amplitude control approach for chaotic signals. Nonlinear Dynamics, 2013, 73, 1335-1341.                                                                               | 2.7 | 114       |
| 7  | Chaotic flows with a single nonquadratic term. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 178-183.                                | 0.9 | 113       |
| 8  | Constructing chaotic systems with conditional symmetry. Nonlinear Dynamics, 2017, 87, 1351-1358.                                                                       | 2.7 | 113       |
| 9  | Constructing Chaotic Systems with Total Amplitude Control. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1530025.      | 0.7 | 112       |
| 10 | An infinite 3-D quasiperiodic lattice of chaotic attractors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 581-587.                  | 0.9 | 109       |
| 11 | Diagnosing multistability by offset boosting. Nonlinear Dynamics, 2017, 90, 1335-1341.                                                                                 | 2.7 | 103       |
| 12 | A New Piecewise Linear Hyperchaotic Circuit. IEEE Transactions on Circuits and Systems II: Express<br>Briefs, 2014, 61, 977-981.                                       | 2.2 | 100       |
| 13 | An infinite 2-D lattice of strange attractors. Nonlinear Dynamics, 2017, 89, 2629-2639.                                                                                | 2.7 | 94        |
| 14 | A Memristive Chaotic Oscillator With Increasing Amplitude and Frequency. IEEE Access, 2018, 6, 12945-12950.                                                            | 2.6 | 92        |
| 15 | Hypogenetic chaotic jerk flows. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1172-1177.                                             | 0.9 | 85        |
| 16 | A New Chaotic System with Multiple Attractors: Dynamic Analysis, Circuit Realization and S-Box<br>Design. Entropy, 2018, 20, 12.                                       | 1.1 | 83        |
| 17 | Bistability in a hyperchaotic system with a line equilibrium. Journal of Experimental and Theoretical Physics, 2014, 118, 494-500.                                     | 0.2 | 81        |
| 18 | Finding coexisting attractors using amplitude control. Nonlinear Dynamics, 2014, 78, 2059-2064.                                                                        | 2.7 | 79        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A new chaotic oscillator with free control. Chaos, 2017, 27, 083101.                                                                                                                                                | 1.0 | 78        |
| 20 | Constructing Infinitely Many Attractors in a Programmable Chaotic Circuit. IEEE Access, 2018, 6, 29003-29012.                                                                                                       | 2.6 | 78        |
| 21 | MULTISTABILITY IN A BUTTERFLY FLOW. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350199.                                                                          | 0.7 | 74        |
| 22 | A New Chaotic System with a Self-Excited Attractor: Entropy Measurement, Signal Encryption, and Parameter Estimation. Entropy, 2018, 20, 86.                                                                        | 1.1 | 70        |
| 23 | Offset Boosting for Breeding Conditional Symmetry. International Journal of Bifurcation and Chaos<br>in Applied Sciences and Engineering, 2018, 28, 1850163.                                                        | 0.7 | 65        |
| 24 | Linearization of the Lorenz system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 888-893.                                                                                        | 0.9 | 64        |
| 25 | Generating Any Number of Initial Offset-Boosted Coexisting Chua's Double-Scroll Attractors via<br>Piecewise-Nonlinear Memristor. IEEE Transactions on Industrial Electronics, 2022, 69, 7202-7212.                  | 5.2 | 61        |
| 26 | Doubling the coexisting attractors. Chaos, 2019, 29, 051102.                                                                                                                                                        | 1.0 | 59        |
| 27 | Fixed-Time Synchronization of Complex Networks With a Simpler Nonchattering Controller. IEEE<br>Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 700-704.                                         | 2.2 | 54        |
| 28 | Amplitude Control Analysis of a Four-Wing Chaotic Attractor, its Electronic Circuit Designs and<br>Microcontroller-Based Random Number Generator. Journal of Circuits, Systems and Computers, 2017,<br>26, 1750190. | 1.0 | 53        |
| 29 | Conditional symmetry: bond for attractor growing. Nonlinear Dynamics, 2019, 95, 1245-1256.                                                                                                                          | 2.7 | 52        |
| 30 | A Self-Reproduction Hyperchaotic Map With Compound Lattice Dynamics. IEEE Transactions on Industrial Electronics, 2022, 69, 10564-10572.                                                                            | 5.2 | 51        |
| 31 | Infinite lattice of hyperchaotic strange attractors. Chaos, Solitons and Fractals, 2018, 109, 76-82.                                                                                                                | 2.5 | 50        |
| 32 | Absolute term introduced to rebuild the chaotic attractor with constant Lyapunov exponent spectrum. Nonlinear Dynamics, 2012, 68, 575-587.                                                                          | 2.7 | 44        |
| 33 | Multivariate Multiscale Complexity Analysis of Self-Reproducing Chaotic Systems. Entropy, 2018, 20,<br>556.                                                                                                         | 1.1 | 44        |
| 34 | A memristive chaotic oscillator with controllable amplitude and frequency. Chaos, Solitons and Fractals, 2020, 139, 110000.                                                                                         | 2.5 | 44        |
| 35 | A Conditional Symmetric Memristive System With Infinitely Many Chaotic Attractors. IEEE Access, 2020, 8, 12394-12401.                                                                                               | 2.6 | 44        |
| 36 | Dynamics editing based on offset boosting. Chaos, 2020, 30, 063124.                                                                                                                                                 | 1.0 | 42        |

**CHUNBIAO LI** 

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Multiple coexisting attractors of the serial–parallel memristor-based chaotic system and its adaptive generalized synchronization. Nonlinear Dynamics, 2018, 94, 2785-2806.                                                   | 2.7 | 40        |
| 38 | A novel four-wing strange attractor born in bistability. IEICE Electronics Express, 2015, 12, 20141116-20141116.                                                                                                              | 0.3 | 39        |
| 39 | Initial value-related dynamical analysis of the memristor-based system with reduced dimensions and<br>its chaotic synchronization via adaptive sliding mode control method. Chinese Journal of Physics,<br>2019, 58, 117-131. | 2.0 | 39        |
| 40 | A Memristive Chaotic System With Hypermultistability and Its Application in Image Encryption. IEEE Access, 2020, 8, 139289-139298.                                                                                            | 2.6 | 38        |
| 41 | A Conservative Memristive System with Amplitude Control and Offset Boosting. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2022, 32, .                                                  | 0.7 | 38        |
| 42 | Modeling and experimental investigation of an AA-sized electromagnetic generator for harvesting energy from human motion. Smart Materials and Structures, 2018, 27, 085008.                                                   | 1.8 | 36        |
| 43 | Coexisting Infinite Equilibria and Chaos. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2130014.                                                                              | 0.7 | 33        |
| 44 | Generating Any Number of Diversified Hidden Attractors via Memristor Coupling. IEEE Transactions on<br>Circuits and Systems I: Regular Papers, 2021, 68, 4945-4956.                                                           | 3.5 | 33        |
| 45 | Memristor-type chaotic mapping. Chaos, 2022, 32, 021104.                                                                                                                                                                      | 1.0 | 33        |
| 46 | A raw data simulator for Bistatic Forward-looking High-speed Maneuvering-platform SAR. Signal<br>Processing, 2015, 117, 151-164.                                                                                              | 2.1 | 32        |
| 47 | A Double-Memristor Hyperchaotic Oscillator With Complete Amplitude Control. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 4935-4944.                                                                 | 3.5 | 32        |
| 48 | Crisis in Amplitude Control Hides in Multistability. International Journal of Bifurcation and Chaos in<br>Applied Sciences and Engineering, 2016, 26, 1650233.                                                                | 0.7 | 30        |
| 49 | A unique jerk system with hidden chaotic oscillation. Nonlinear Dynamics, 2016, 86, 197-203.                                                                                                                                  | 2.7 | 30        |
| 50 | Amplitude-phase control of a novel chaotic attractor. Turkish Journal of Electrical Engineering and<br>Computer Sciences, 2016, 24, 1-11.                                                                                     | 0.9 | 27        |
| 51 | An amplitude-controllable 3-D hyperchaotic map with homogenous multistability. Nonlinear Dynamics, 2021, 105, 1843-1857.                                                                                                      | 2.7 | 27        |
| 52 | A 2D hyperchaotic map with conditional symmetry and attractor growth. Chaos, 2021, 31, 043121.                                                                                                                                | 1.0 | 23        |
| 53 | Infinitely many coexisting attractors of a dual memristive Shinriki oscillator and its FPGA digital implementation. Chinese Journal of Physics, 2019, 62, 342-357.                                                            | 2.0 | 22        |
| 54 | Comment on "How to obtain extreme multistability in coupled dynamical systems― Physical Review E,<br>2014, 89, 066901.                                                                                                        | 0.8 | 21        |

| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Dynamic transport: From bifurcation to multistability. Communications in Nonlinear Science and Numerical Simulation, 2021, 95, 105600.                            | 1.7 | 20        |
| 56 | Hidden Attractors with Conditional Symmetry. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2030042.               | 0.7 | 19        |
| 57 | Suppressing spiral waves in a lattice array of coupled neurons using delayed asymmetric synapse coupling. Chaos, Solitons and Fractals, 2021, 146, 110855.        | 2.5 | 19        |
| 58 | Controlling Coexisting Attractors of Conditional Symmetry. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1950207. | 0.7 | 17        |
| 59 | A memristive chaotic system with offset-boostable conditional symmetry. European Physical Journal:<br>Special Topics, 2020, 229, 1059-1069.                       | 1.2 | 17        |
| 60 | Symmetry Evolution in Chaotic System. Symmetry, 2020, 12, 574.                                                                                                    | 1.1 | 16        |
| 61 | A Symmetric Controllable Hyperchaotic Hidden Attractor. Symmetry, 2020, 12, 550.                                                                                  | 1.1 | 16        |
| 62 | A 2-D conditional symmetric hyperchaotic map with complete control. Nonlinear Dynamics, 2022, 109,<br>1155-1165.                                                  | 2.7 | 16        |
| 63 | A Switchable Chaotic Oscillator with Two Amplitude–Frequency Controllers. Journal of Circuits,<br>Systems and Computers, 2017, 26, 1750158.                       | 1.0 | 15        |
| 64 | How to Bridge Attractors and Repellors. International Journal of Bifurcation and Chaos in Applied<br>Sciences and Engineering, 2017, 27, 1750149.                 | 0.7 | 15        |
| 65 | Constructing hyperchaotic attractors of conditional symmetry. European Physical Journal B, 2019, 92,<br>1.                                                        | 0.6 | 15        |
| 66 | A simple memristive jerk system. IET Circuits, Devices and Systems, 2021, 15, 388-392.                                                                            | 0.9 | 15        |
| 67 | Polarity balance for attractor self-reproducing. Chaos, 2020, 30, 063144.                                                                                         | 1.0 | 14        |
| 68 | A conditional symmetric memristive system with amplitude and frequency control. European Physical<br>Journal: Special Topics, 2020, 229, 1007-1019.               | 1.2 | 14        |
| 69 | A memristive chaotic system with flexible attractor growing. European Physical Journal: Special<br>Topics, 2021, 230, 1695-1708.                                  | 1.2 | 13        |
| 70 | Constructing chaotic repellors. Chaos, Solitons and Fractals, 2021, 142, 110544.                                                                                  | 2.5 | 12        |
| 71 | A Memristive Hyperjerk Chaotic System: Amplitude Control, FPGA Design, and Prediction with Artificial<br>Neural Network. Complexity, 2021, 2021, 1-17.            | 0.9 | 12        |
| 72 | A New Class of Chaotic Circuit with Logic Elements. Journal of Circuits, Systems and Computers, 2015, 24, 1550136.                                                | 1.0 | 11        |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Rotation control of an HR neuron with a locally active memristor. European Physical Journal Plus, 2022, 137, .                                                                                         | 1.2 | 11        |
| 74 | Coexisting chaotic attractors in a memristive system and their amplitude control. Pramana - Journal of Physics, 2020, 94, 1.                                                                           | 0.9 | 9         |
| 75 | Broken Symmetry in a Memristive Chaotic Oscillator. IEEE Access, 2020, 8, 69222-69229.                                                                                                                 | 2.6 | 9         |
| 76 | Simplification of Chaotic Circuits With Quadratic Nonlinearity. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1837-1841.                                                     | 2.2 | 9         |
| 77 | An Initially-Controlled Double-Scroll Hyperchaotic Map. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2022, 32, .                                                | 0.7 | 9         |
| 78 | Attractor and bifurcation of forced Lorenz-84 system. International Journal of Geometric Methods in<br>Modern Physics, 2019, 16, 1950002.                                                              | 0.8 | 8         |
| 79 | A symmetric pair of hyperchaotic attractors. International Journal of Circuit Theory and Applications, 2018, 46, 2434-2443.                                                                            | 1.3 | 7         |
| 80 | Magnetic induction can control the effect of external electrical stimuli on the spiral wave. Applied<br>Mathematics and Computation, 2021, 390, 125608.                                                | 1.4 | 7         |
| 81 | Periodic offset boosting for attractor self-reproducing. Chaos, 2021, 31, 113108.                                                                                                                      | 1.0 | 7         |
| 82 | Synchronization-based scheme for calculating ambiguity functions of wideband chaotic signals. IEEE<br>Transactions on Aerospace and Electronic Systems, 2008, 44, 367-372.                             | 2.6 | 6         |
| 83 | Spiral Waves in a Lattice Array of Josephson Junction Chaotic Oscillators with Flux Effects.<br>Mathematical Problems in Engineering, 2021, 2021, 1-9.                                                 | 0.6 | 6         |
| 84 | A 2D Hyperchaotic Map: Amplitude Control, Coexisting Symmetrical Attractors and Circuit<br>Implementation. Symmetry, 2021, 13, 1047.                                                                   | 1.1 | 6         |
| 85 | A Hidden Chaotic Attractor with an Independent Amplitude-Frequency Controller. Complexity, 2022, 2022, 1-11.                                                                                           | 0.9 | 6         |
| 86 | Synchronisation control of composite chaotic systems. International Journal of Systems Science, 2016, 47, 3952-3959.                                                                                   | 3.7 | 5         |
| 87 | Time-Reversible Chaotic System with Conditional Symmetry. International Journal of Bifurcation and<br>Chaos in Applied Sciences and Engineering, 2020, 30, 2050067.                                    | 0.7 | 5         |
| 88 | Dynamical analysis of boundary behaviors of current-controlled DC–DC buck converter. Nonlinear<br>Dynamics, 2021, 106, 2203-2228.                                                                      | 2.7 | 5         |
| 89 | Simplified Memristive Lorenz Oscillator. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 3344-3348.                                                                            | 2.2 | 5         |
| 90 | Analysis of Geometric Invariants for Three Types of Bifurcations in 2D Differential Systems.<br>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2150105. | 0.7 | 4         |

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Hyperchaotic Oscillation in the Deformed Rikitake Two-Disc Dynamo System Induced by Memory Effect.<br>Complexity, 2020, 2020, 1-10.                                 | 0.9 | 3         |
| 92 | Effects of noise on the wave propagation in an excitable media with magnetic induction. European<br>Physical Journal: Special Topics, 0, , 1.                       | 1.2 | 3         |
| 93 | Asymmetry Evolvement and Controllability of a Symmetric Hyperchaotic Map. Symmetry, 2021, 13, 1039.                                                                 | 1.1 | 3         |
| 94 | A memristive RBF neural network and its application in unsupervised medical image segmentation.<br>European Physical Journal: Special Topics, 2022, 231, 1005-1014. | 1.2 | 2         |
| 95 | Datum correction based on wave equation inversion in time for UWB throughâ€theâ€wall radar. IET<br>Radar, Sonar and Navigation, 2017, 11, 1116-1123.                | 0.9 | 1         |
| 96 | The Scroll Control of a New Chaotic System. , 2008, , .                                                                                                             |     | 0         |
| 97 | Partially blind extraction of continuous chaotic signals from a linear mixture. Journal of Electronics, 2009, 26, 600-607.                                          | 0.2 | 0         |