Jonas Lategahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/475525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overcoming EGFRG724S-mediated osimertinib resistance through unique binding characteristics of second-generation EGFR inhibitors. Nature Communications, 2018, 9, 4655.	5.8	107
2	Targeting Drug Resistance in EGFR with Covalent Inhibitors: A Structure-Based Design Approach. Journal of Medicinal Chemistry, 2015, 58, 6844-6863.	2.9	92
3	Trisubstituted Pyridinylimidazoles as Potent Inhibitors of the Clinically Resistant L858R/T790M/C797S EGFR Mutant: Targeting of Both Hydrophobic Regions and the Phosphate Binding Site. Journal of Medicinal Chemistry, 2017, 60, 5613-5637.	2.9	77
4	Hope and Disappointment: Covalent Inhibitors to Overcome Drug Resistance in Non-Small Cell Lung Cancer. ACS Medicinal Chemistry Letters, 2016, 7, 2-5.	1.3	75
5	C797S Resistance: The Undruggable EGFR Mutation in Non-Small Cell Lung Cancer?. ACS Medicinal Chemistry Letters, 2018, 9, 779-782.	1.3	56
6	Insight into the Inhibition of Drugâ€Resistant Mutants of the Receptor Tyrosine Kinase EGFR. Angewandte Chemie - International Edition, 2016, 55, 10909-10912.	7.2	54
7	Resistance to Avapritinib in PDGFRA-Driven GIST Is Caused by Secondary Mutations in the PDGFRA Kinase Domain. Cancer Discovery, 2021, 11, 108-125.	7.7	47
8	Indazole-Based Covalent Inhibitors To Target Drug-Resistant Epidermal Growth Factor Receptor. Journal of Medicinal Chemistry, 2017, 60, 2361-2372.	2.9	43
9	Lessons To Be Learned: The Molecular Basis of Kinaseâ€Targeted Therapies and Drug Resistance in Nonâ€ S mall Cell Lung Cancer. Angewandte Chemie - International Edition, 2018, 57, 2307-2313.	7.2	36
10	A novel scaffold for EGFR inhibition: Introducing N-(3-(3-phenylureido)quinoxalin-6-yl) acrylamide derivatives. Scientific Reports, 2019, 9, 14.	1.6	28
11	Complex Crystal Structures of EGFR with Third-Generation Kinase Inhibitors and Simultaneously Bound Allosteric Ligands. ACS Medicinal Chemistry Letters, 2020, 11, 2484-2490.	1.3	26
12	Inhibition of osimertinib-resistant epidermal growth factor receptor EGFR-T790M/C797S. Chemical Science, 2019, 10, 10789-10801.	3.7	25
13	Structure-Guided Development of Covalent and Mutant-Selective Pyrazolopyrimidines to Target T790M Drug Resistance in Epidermal Growth Factor Receptor. Journal of Medicinal Chemistry, 2017, 60, 7725-7744.	2.9	24
14	Targeting the MKK7–JNK (Mitogen-Activated Protein Kinase Kinase 7–c-Jun N-Terminal Kinase) Pathway with Covalent Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 2843-2848.	2.9	18
15	An Unusual Intramolecular Halogen Bond Guides Conformational Selection. Angewandte Chemie - International Edition, 2018, 57, 9970-9975.	7.2	12
16	Characterization of Covalent Pyrazolopyrimidine–MKK7 Complexes and a Report on a Unique DFG-in/Leu-in Conformation of Mitogen-Activated Protein Kinase Kinase 7 (MKK7). Journal of Medicinal Chemistry, 2019, 62, 5541-5546.	2.9	12
17	Insight into Targeting Exon20 Insertion Mutations of the Epidermal Growth Factor Receptor with Wild Type-Sparing Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 6643-6655.	2.9	12
18	Insights into the Kinetics of the Resistance Formation of Bacteria against Ciprofloxacin Poly(2-methyl-2-oxazoline) Conjugates. Bioconjugate Chemistry, 2018, 29, 2671-2678.	1.8	10

Jonas Lategahn

#	Article	IF	CITATIONS
19	Structure Defines Function: Clinically Relevant Mutations in ErbB Kinases. Journal of Medicinal Chemistry, 2020, 63, 40-51.	2.9	9
20	Targeting Her2-insYVMA with Covalent Inhibitors—A Focused Compound Screening and Structure-Based Design Approach. Journal of Medicinal Chemistry, 2020, 63, 11725-11755.	2.9	7
21	RASPELD to Perform Highâ€End Screening in an Academic Environment toward the Development of Cancer Therapeutics. ChemMedChem, 2018, 13, 2065-2072.	1.6	5
22	Inhibition wirkstoffresistenter Mutationsvarianten der Rezeptortyrosinkinase EGFR. Angewandte Chemie, 2016, 128, 11069-11073.	1.6	4
23	Lektion gelernt? Die molekularen Grundlagen von Kinaseâ€gerichteten Therapien und Wirkstoffresistenz im nichtâ€kleinzelligen Lungenkrebs. Angewandte Chemie, 2018, 130, 2329-2335.	1.6	1
24	Targeting EGFR Ex20 mutant lung cancer with the wild type sparing kinase inhibitor PRB001 Journal of Clinical Oncology, 2019, 37, e14718-e14718.	0.8	1