
Jianming Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4755118/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning interface stability of nickel-rich LiNi0.9Co0.05Mn0.05O2 cathode via a novel bis(vinylsulphonyl)methane additive. Journal of Power Sources, 2022, 521, 230917.	4.0	18
2	Improving interfacial stability of high voltage LiCoO2-based cells with 4-methylmorpholine-2,6-dione additive. Journal of Power Sources, 2022, 524, 231049.	4.0	15
3	Highly stable operation of LiCoO2 at cut-off ≥ 4.6ÂV enabled by synergistic structural and interfacial manipulation. Energy Storage Materials, 2022, 46, 406-416.	9.5	48
4	Synergistical Stabilization of Li Metal Anodes and LiCoO ₂ Cathodes in High-Voltage Liâ^¥LiCoO ₂ Batteries by Potassium Selenocyanate (KSeCN) Additive. ACS Energy Letters, 2022, 7, 1364-1373.	8.8	49
5	Pushing Lithium Cobalt Oxides to 4.7ÂV by Latticeâ€Matched Interfacial Engineering. Advanced Energy Materials, 2022, 12, .	10.2	77
6	Boosting high voltage cycling of LiCoO2 cathode via triisopropanolamine cyclic borate electrolyte additive. Journal of Power Sources, 2022, 532, 231372.	4.0	14
7	Dictating the interfacial stability of nickel-rich LiNi0.90Co0.05Mn0.05O2 via a diazacyclo electrolyte additive – 2-Fluoropyrazine. Journal of Colloid and Interface Science, 2022, 618, 431-441.	5.0	10
8	Stable cycling and fast charging of high-voltage lithium metal batteries enabled by functional solvation chemistry. Chemical Engineering Journal, 2022, 442, 136351.	6.6	23
9	Substantially Promoted Energy Density of Li CF _{<i>x</i>} Primary Battery Enabled by Li ⁺ -DMP Coordinated Structure. ACS Sustainable Chemistry and Engineering, 2022, 10, 6217-6229.	3.2	9
10	In Situ Construction of a LiF-Enriched Interfacial Modification Layer for Stable All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2022, 14, 29878-29885.	4.0	5
11	Revealing the correlation between structure evolution and electrochemical performance of high-voltage lithium cobalt oxide. Journal of Energy Chemistry, 2021, 54, 786-794.	7.1	36
12	Research progress of fluorine-containing electrolyte additives for lithium ion batteries. Journal of Power Sources Advances, 2021, 7, 100043.	2.6	55
13	Enhanced Cycle Life and Rate Capability of Single-Crystal, Ni-Rich LiNi _{0.9} Co _{0.05} Mn _{0.05} O ₂ Enabled by 1,2,4-1 <i>H</i> -Triazole Additive. ACS Applied Materials & Interfaces, 2021, 13, 16427-16436.	4.0	53
14	Stabilizing Ni-Rich LiNi _{0.83} Co _{0.12} Mn _{0.05} O ₂ with Cyclopentyl Isocyanate as a Novel Electrolyte Additive. ACS Applied Materials & Interfaces, 2021, 13, 12069-12078.	4.0	43
15	Interfacial Enhancement of Silicon-Based Anode by a Lactam-Type Electrolyte Additive. ACS Applied Energy Materials, 2021, 4, 10323-10332.	2.5	14
16	Enhanced Interfacial Stability of a LiNi _{0.9} Co _{0.05} Mn _{0.05} O ₂ Cathode by a Diboron Additive. ACS Applied Energy Materials, 2021, 4, 11051-11061.	2.5	18
17	Stabilizing the LiCoO ₂ Interface at High Voltage with an Electrolyte Additive 2,4,6-Tris(4-fluorophenyl)boroxin. ACS Sustainable Chemistry and Engineering, 2021, 9, 15042-15052.	3.2	22
18	Electrolyte Additive <i>cis</i> -1,2,3,6-Tetrahydrophthalic Anhydride Enhanced the Cycle Life of Nickel-Rich LiNi _{0.9} Co _{0.05} Mn _{0.05} O ₂ . ACS Applied Energy Materials, 2021, 4, 12275-12284.	2.5	15

#	Article	IF	CITATIONS
19	A novel trimethylsilyl 2-(fluorosulfonyl)difluoroacetate additive for stabilizing the Ni-rich LiNi0.9Co0.05Mn0.05O2/electrolyte interface. Journal of Power Sources, 2021, 515, 230618.	4.0	30
20	Boosting the Energy Density of Li CF <i>_x</i> Primary Batteries Using a 1,3-Dimethyl-2-imidazolidinone-Based Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 57470-57480.	4.0	21
21	Thermodynamics of Antisite Defects in Layered NMC Cathodes: Systematic Insights from High-Precision Powder Diffraction Analyses. Chemistry of Materials, 2020, 32, 1002-1010.	3.2	44
22	Enhancing Chemical Interaction of Polysulfide and Carbon through Synergetic Nitrogen and Phosphorus Doping. ACS Sustainable Chemistry and Engineering, 2020, 8, 806-813.	3.2	11
23	Direct Observation of Defectâ€Aided Structural Evolution in a Nickelâ€Rich Layered Cathode. Angewandte Chemie, 2020, 132, 22276-22283.	1.6	15
24	Direct Observation of Defectâ€Aided Structural Evolution in a Nickelâ€Rich Layered Cathode. Angewandte Chemie - International Edition, 2020, 59, 22092-22099.	7.2	75
25	Optimized Al Doping Improves Both Interphase Stability and Bulk Structural Integrity of Ni-Rich NMC Cathode Materials. ACS Applied Energy Materials, 2020, 3, 3369-3377.	2.5	66
26	Performance enhanced high-nickel lithium metal batteries through stable cathode and anode electrolyte interfaces. Sustainable Energy and Fuels, 2020, 4, 2875-2883.	2.5	2
27	The Role of Secondary Particle Structures in Surface Phase Transitions of Ni-Rich Cathodes. Chemistry of Materials, 2020, 32, 2884-2892.	3.2	60
28	Atomic scale insight into the fundamental mechanism of Mn doped LiFePO ₄ . Sustainable Energy and Fuels, 2020, 4, 2741-2751.	2.5	17
29	Armoring LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathode with Reliable Fluorinated Organic–Inorganic Hybrid Interphase Layer toward Durable High Rate Battery. Advanced Functional Materials, 2020, 30, 2000396.	7.8	74
30	Unlocking the passivation nature of the cathode–air interfacial reactions in lithium ion batteries. Nature Communications, 2020, 11, 3204.	5.8	55
31	Controlling Surface Phase Transition and Chemical Reactivity of O3-Layered Metal Oxide Cathodes for High-Performance Na-Ion Batteries. ACS Energy Letters, 2020, 5, 1718-1725.	8.8	64
32	Atomic layer deposition of Al2O3 on LiNi0.68Co0.10Mn0.22O2 for enhanced electrochemical performance. Materials Letters, 2020, 271, 127771.	1.3	5
33	First Atomic-Scale Insight into Degradation in Lithium Iron Phosphate Cathodes by Transmission Electron Microscopy. Journal of Physical Chemistry Letters, 2020, 11, 4608-4617.	2.1	16
34	High-Efficiency Lithium Metal Anode Enabled by a Concentrated/Fluorinated Ester Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 27794-27802.	4.0	31
35	Applications of XPS in the characterization of Battery materials. Journal of Electron Spectroscopy and Related Phenomena, 2019, 231, 2-10.	0.8	101
36	A functional SrF ₂ coated separator enabling a robust and dendrite-free solid electrolyte interphase on a lithium metal anode. Journal of Materials Chemistry A, 2019, 7, 21349-21361.	5.2	47

#	Article	IF	CITATIONS
37	Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nature Nanotechnology, 2019, 14, 602-608.	15.6	321
38	Dual Carbonaceous Materials Synergetic Protection Silicon as a High-Performance Free-Standing Anode for Lithium-Ion Battery. Nanomaterials, 2019, 9, 650.	1.9	18
39	Self-supporting lithium titanate nanorod/carbon nanotube/reduced graphene oxide flexible electrode for high performance hybrid lithium-ion capacitor. Journal of Alloys and Compounds, 2019, 790, 1157-1166.	2.8	13
40	Self-assembly encapsulation of Si in N-doped reduced graphene oxide for use as a lithium ion battery anode with significantly enhanced electrochemical performance. Sustainable Energy and Fuels, 2019, 3, 1427-1438.	2.5	32
41	Highly Stable Oxygen Electrodes Enabled by Catalyst Redistribution through an In Situ Electrochemical Method. Advanced Energy Materials, 2019, 9, 1803598.	10.2	6
42	In situ catalytic growth 3D multi-layers graphene sheets coated nano-silicon anode for high performance lithium-ion batteries. Chemical Engineering Journal, 2019, 356, 895-903.	6.6	131
43	Hierarchical Microspheres of Aggregated Silicon Nanoparticles with Nanometre Gaps as the Anode for Lithiumâ€lon Batteries with Excellent Cycling Stability. ChemElectroChem, 2019, 6, 1139-1148.	1.7	8
44	Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy, 2018, 49, 434-452.	8.2	400
45	Dendriteâ€Free and Performanceâ€Enhanced Lithium Metal Batteries through Optimizing Solvent Compositions and Adding Combinational Additives. Advanced Energy Materials, 2018, 8, 1703022.	10.2	123
46	Insights into the Electrochemical Reaction Mechanism of a Novel Cathode Material CuNi ₂ (PO ₄) ₂ /C for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 3522-3529.	4.0	7
47	Effects of Imide–Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2018, 10, 2469-2479.	4.0	110
48	Enhanced Cyclability of Lithium–Oxygen Batteries with Electrodes Protected by Surface Films Induced via In Situ Electrochemical Process. Advanced Energy Materials, 2018, 8, 1702340.	10.2	38
49	Extremely Stable Sodium Metal Batteries Enabled by Localized High-Concentration Electrolytes. ACS Energy Letters, 2018, 3, 315-321.	8.8	373
50	Simultaneous Stabilization of LiNi _{0.76} Mn _{0.14} Co _{0.10} O ₂ Cathode and Lithium Metal Anode by Lithium Bis(oxalato)borate as Additive. ChemSusChem, 2018, 11, 2211-2220.	3.6	89
51	Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries. Nano Energy, 2018, 49, 538-548.	8.2	213
52	High Voltage Operation of Niâ€Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases. Advanced Energy Materials, 2018, 8, 1800297.	10.2	298
53	Highâ€Voltage Lithiumâ€Metal Batteries Enabled by Localized High oncentration Electrolytes. Advanced Materials, 2018, 30, e1706102.	11.1	761
54	Fundamental Insight into Zr Modification of Li- and Mn-Rich Cathodes: Combined Transmission Electron Microscopy and Electrochemical Impedance Spectroscopy Study. Chemistry of Materials, 2018, 30, 2566-2573.	3.2	106

#	Article	IF	CITATIONS
55	Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries. Advanced Energy Materials, 2018, 8, 1702097.	10.2	704
56	Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor. Carbon, 2018, 129, 236-244.	5.4	244
57	Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries. Joule, 2018, 2, 110-124.	11.7	280
58	Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ . Sustainable Energy and Fuels, 2018, 2, 413-421.	2.5	135
59	Tubular titanium oxide/reduced graphene oxide-sulfur composite for improved performance of lithium sulfur batteries. Carbon, 2018, 128, 63-69.	5.4	43
60	Solid–Liquid Interfacial Reaction Trigged Propagation of Phase Transition from Surface into Bulk Lattice of Ni-Rich Layered Cathode. Chemistry of Materials, 2018, 30, 7016-7026.	3.2	80
61	Extending the limits of powder diffraction analysis: Diffraction parameter space, occupancy defects, and atomic form factors. Review of Scientific Instruments, 2018, 89, 093002.	0.6	18
62	Revealing Cycling Rate-Dependent Structure Evolution in Ni-Rich Layered Cathode Materials. ACS Energy Letters, 2018, 3, 2433-2440.	8.8	92
63	Liâ€Rich Li[Li _{1/6} Fe _{1/6} Ni _{1/6} Mn _{1/2}]O ₂ (LFNMO) Cathodes: Atomic Scale Insight on the Mechanisms of Cycling Decay and of the Improvement due to Cobalt Phosphate Surface Modification. Small, 2018, 14, e1802570.	5.2	41
64	High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes. Joule, 2018, 2, 1548-1558.	11.7	436
65	A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy, 2018, 50, 589-597.	8.2	191
66	Optimal synthetic conditions for a novel and high performance Ni-rich cathode material of LiNi _{0.68} Co _{0.10} Mn _{0.22} O ₂ . Sustainable Energy and Fuels, 2018, 2, 1772-1780.	2.5	27
67	Lithiumâ€Metal Batteries: Highâ€Voltage Lithiumâ€Metal Batteries Enabled by Localized Highâ€Concentration Electrolytes (Adv. Mater. 21/2018). Advanced Materials, 2018, 30, 1870144.	11.1	4
68	Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nature Energy, 2018, 3, 739-746.	19.8	767
69	Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode. Nature Communications, 2018, 9, 2437.	5.8	200
70	Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nature Energy, 2018, 3, 600-605.	19.8	613
71	Observation of Solid-Liquid Interfacial Reactions Controlled Bulk Phase Transition of Ni-rich Layered Cathode. Microscopy and Microanalysis, 2018, 24, 1522-1523.	0.2	1
72	Minimizing Polysulfide Shuttle Effect in Lithium-Ion Sulfur Batteries by Anode Surface Passivation. ACS Applied Materials & Interfaces, 2018, 10, 21965-21972.	4.0	18

#	Article	IF	CITATIONS
73	Enabling High-Energy-Density Cathode for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 23094-23102.	4.0	67
74	Localized High-Concentration Sulfone Electrolytes for High-Efficiency Lithium-Metal Batteries. CheM, 2018, 4, 1877-1892.	5.8	628
75	Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nature Communications, 2017, 8, 14101.	5.8	654
76	Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries. Journal of Physical Chemistry Letters, 2017, 8, 1072-1077.	2.1	156
77	Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nature Energy, 2017, 2, .	19.8	1,048
78	Atomic Resolution Structural and Chemical Imaging Revealing the Sequential Migration of Ni, Co, and Mn upon the Battery Cycling of Layered Cathode. Nano Letters, 2017, 17, 3946-3951.	4.5	143
79	Wide-Temperature Electrolytes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 18826-18835.	4.0	150
80	Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications. Advanced Science, 2017, 4, 1700032.	5.6	363
81	Li―and Mnâ€Rich Cathode Materials: Challenges to Commercialization. Advanced Energy Materials, 2017, 7, 1601284.	10.2	383
82	Temperature Dependence of the Oxygen Reduction Mechanism in Nonaqueous Li–O ₂ Batteries. ACS Energy Letters, 2017, 2, 2525-2530.	8.8	30
83	Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes. Nano Energy, 2017, 40, 607-617.	8.2	160
84	Suppressed oxygen extraction and degradation of LiNi x Mn y Co z O2 cathodes at high charge cut-off voltages. Nano Research, 2017, 10, 4221-4231.	5.8	77
85	Yolk-shell structured Sb@C anodes for high energy Na-ion batteries. Nano Energy, 2017, 40, 504-511.	8.2	123
86	S/TEM Study of Fading Mechanism of Lithium Transition Metal Oxide Cathode for Lithium Ion Battery. Microscopy and Microanalysis, 2017, 23, 2016-2017.	0.2	1
87	Li ⁺ -Desolvation Dictating Lithium-Ion Battery's Low-Temperature Performances. ACS Applied Materials & Interfaces, 2017, 9, 42761-42768.	4.0	200
88	Atomic scale study of surface orientations and energies of Ti2O3 crystals. Applied Physics Letters, 2017, 111, .	1.5	3
89	Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient Highâ€Concentration Electrolyte Layer. Advanced Energy Materials, 2016, 6, 1502151.	10.2	236
90	Lithium Metal Batteries: Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High oncentration Electrolyte Layer (Adv. Energy Mater. 8/2016). Advanced Energy Materials, 2016, 6, .	10.2	1

#	Article	IF	CITATIONS
91	Electrochemically Formed Ultrafine Metal Oxide Nanocatalysts for High-Performance Lithium–Oxygen Batteries. Nano Letters, 2016, 16, 4932-4939.	4.5	62
92	Ni and Co Segregations on Selective Surface Facets and Rational Design of Layered Lithium Transitionâ€Metal Oxide Cathodes. Advanced Energy Materials, 2016, 6, 1502455.	10.2	100
93	Investigating Side Reactions and Coating Effects on High Voltage Layered Cathodes for Lithium Ion Batteries. Microscopy and Microanalysis, 2016, 22, 1312-1313.	0.2	0
94	Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes. Journal of Power Sources, 2016, 318, 170-177.	4.0	186
95	The roles of oxygen non-stoichiometry on the electrochemical properties of oxide-based cathode materials. Nano Today, 2016, 11, 678-694.	6.2	72
96	Hard carbon coated nano-Si/graphite composite as a high performance anode for Li-ion batteries. Journal of Power Sources, 2016, 329, 323-329.	4.0	73
97	Anodeâ€Free Rechargeable Lithium Metal Batteries. Advanced Functional Materials, 2016, 26, 7094-7102.	7.8	495
98	Cathode Materials: Ni and Co Segregations on Selective Surface Facets and Rational Design of Layered Lithium Transition-Metal Oxide Cathodes (Adv. Energy Mater. 9/2016). Advanced Energy Materials, 2016, 6, .	10.2	2
99	A Spinel-Integrated P2-Type Layered Composite: High-Rate Cathode for Sodium-Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A584-A591.	1.3	57
100	The Effect of Entropy and Enthalpy Changes on the Thermal Behavior of Li-Mn-Rich Layered Composite Cathode Materials. Journal of the Electrochemical Society, 2016, 163, A571-A577.	1.3	19
101	Effects of Propylene Carbonate Content in CsPF ₆ -Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 5715-5722.	4.0	43
102	Influence of memory effect on the state-of-charge estimation of large-format Li-ion batteries based on LiFePO4 cathode. Journal of Power Sources, 2016, 312, 55-59.	4.0	18
103	Atomic to Nanoscale Investigation of Functionalities of an Al ₂ O ₃ Coating Layer on a Cathode for Enhanced Battery Performance. Chemistry of Materials, 2016, 28, 857-863.	3.2	125
104	Charge-Discharge Cycling Induced Structural and Chemical Evolution of Li2MnO3 Cathode for Li-ion Batteries. Microscopy and Microanalysis, 2015, 21, 473-474.	0.2	0
105	Interfacial Reaction Dependent Performance of Hollow Carbon Nanosphere ââ,¬â€œ Sulfur Composite as a Cathode for Li-S Battery. Frontiers in Energy Research, 2015, 3, .	1.2	3
106	Recent Advances on the Understanding of Structural and Composition Evolution of LMR Cathodes for Li-ion Batteries. Frontiers in Energy Research, 2015, 3, .	1.2	19
107	Probing the failure mechanism of nanoscale LiFePO4 for Li-ion batteries. Applied Physics Letters, 2015, 106, 203902.	1.5	15
108	Structural and Chemical Evolution of Li- and Mn-Rich Layered Cathode Material. Chemistry of Materials. 2015. 27. 1381-1390.	3.2	311

#	Article	IF	CITATIONS
109	Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries. Journal of the Electrochemical Society, 2015, 162, A474-A478.	1.3	178
110	Probing the Degradation Mechanism of Li ₂ MnO ₃ Cathode for Li-Ion Batteries. Chemistry of Materials, 2015, 27, 975-982.	3.2	130
111	Enhanced performance of Li LiFePO4 cells using CsPF6 as an electrolyte additive. Journal of Power Sources, 2015, 293, 1062-1067.	4.0	29
112	Atomic-Resolution Visualization of Distinctive Chemical Mixing Behavior of Ni, Co, and Mn with Li in Layered Lithium Transition-Metal Oxide Cathode Materials. Chemistry of Materials, 2015, 27, 5393-5401.	3.2	108
113	Effects of structural defects on the electrochemical activation of Li2MnO3. Nano Energy, 2015, 16, 143-151.	8.2	73
114	Following the Transient Reactions in Lithium–Sulfur Batteries Using an In Situ Nuclear Magnetic Resonance Technique. Nano Letters, 2015, 15, 3309-3316.	4.5	107
115	Role of Mn Content on the Electrochemical Properties of Nickel-Rich Layered LiNi _{0.8–<i>x</i>} Co _{0.1} Mn _{0.1+<i>x</i>} O ₂ (0.0 ≤i>x </td <td>i>)4TjþETQ</td> <td>q12150.78431</td>	i>)4TjþETQ	q1215 0.7 8431
116	High Energy Density Lithium–Sulfur Batteries: Challenges of Thick Sulfur Cathodes. Advanced Energy Materials, 2015, 5, 1402290.	10.2	483
117	Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges. Nano Energy, 2015, 17, 366-383.	8.2	228
118	Phosphorus Enrichment as a New Composition in the Solid Electrolyte Interphase of High-Voltage Cathodes and Its Effects on Battery Cycling. Chemistry of Materials, 2015, 27, 7447-7451.	3.2	37
119	Evolution of Lattice Structure and Chemical Composition of the Surface Reconstruction Layer in Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Cathode Material for Lithium Ion Batteries. Nano Letters, 2015, 15, 514-522.	4.5	261
120	Interface modifications by anion receptors for high energy lithium ion batteries. Journal of Power Sources, 2014, 250, 313-318.	4.0	74
121	Reduction Mechanism of Fluoroethylene Carbonate for Stable Solid–Electrolyte Interphase Film on Silicon Anode. ChemSusChem, 2014, 7, 549-554.	3.6	126
122	Optimized Operating Range for Large-Format LiFePO ₄ /Graphite Batteries. Journal of the Electrochemical Society, 2014, 161, A336-A341.	1.3	53
123	Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperatures. Journal of Materials Chemistry A, 2014, 2, 2346.	5.2	85
124	Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures. Nature Communications, 2014, 5, 3015.	5.8	290
125	Functioning Mechanism of AlF ₃ Coating on the Li- and Mn-Rich Cathode Materials. Chemistry of Materials, 2014, 26, 6320-6327.	3.2	333
126	Lewis Acid–Base Interactions between Polysulfides and Metal Organic Framework in Lithium Sulfur Batteries. Nano Letters, 2014, 14, 2345-2352.	4.5	623

#	Article	IF	CITATIONS
127	Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution. Nano Letters, 2014, 14, 2628-2635.	4.5	273
128	Li[Li0.2Mn0.54Ni0.13Co0.13]O2–LiMn1.5Ti0.5O4 composite cathodes with improved electrochemical performance for lithium ion batteries. Electrochimica Acta, 2014, 133, 100-106.	2.6	22
129	Corrosion/Fragmentation of Layered Composite Cathode and Related Capacity/Voltage Fading during Cycling Process. Nano Letters, 2013, 13, 3824-3830.	4.5	353
130	Hierarchically structured materials for lithium batteries. Nanotechnology, 2013, 24, 424004.	1.3	30
131	Lattice Mn ³⁺ Behaviors in Li ₄ Ti ₅ O ₁₂ /LiNi _{0.5} Mn _{1.5} O ₄ Full Cells. Journal of the Electrochemical Society, 2013, 160, A1264-A1268.	1.3	35
132	Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material by fluorine incorporation. Electrochimica Acta, 2013, 105, 200-208.	2.6	137
133	Simply AlF3-treated Li4Ti5O12 composite anode materials for stable and ultrahigh power lithium-ion batteries. Journal of Power Sources, 2013, 236, 169-174.	4.0	51
134	Electrochemical Kinetics and Performance of Layered Composite Cathode Material Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ . Journal of the Electrochemical Society, 2013, 160, A2212-A2219.	1.3	104
135	Surface and structural stabilities of carbon additives in high voltage lithium ion batteries. Journal of Power Sources, 2013, 227, 211-217.	4.0	55
136	Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries. ACS Nano, 2013, 7, 760-767.	7.3	772
137	Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 8464.	5.2	229
138	Interplay between two-phase and solid solution reactions in high voltage spinel cathode material for lithium ion batteries. Journal of Power Sources, 2013, 242, 736-741.	4.0	24
139	Novel Phosphamide Additive to Improve Thermal Stability of Solid Electrolyte Interphase on Graphite Anode in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 11494-11497.	4.0	42
140	Controlled Nucleation and Growth Process of Li ₂ S ₂ /Li ₂ S in Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2013, 160, A1992-A1996.	1.3	89
141	How to Obtain Reproducible Results for Lithium Sulfur Batteries?. Journal of the Electrochemical Society, 2013, 160, A2288-A2292.	1.3	149
142	Revisit Carbon/Sulfur Composite for Li-S Batteries. Journal of the Electrochemical Society, 2013, 160, A1624-A1628.	1.3	98
143	Tris(hexafluoro-iso-propyl)phosphate as an SEI-Forming Additive on Improving the Electrochemical Performance of the Li[Li _{0.2} Mn _{0.56} Ni _{0.16} Co _{0.08}]O ₂ Cathode Material. Journal of the Electrochemical Society. 2013. 160. A285-A292.	1.3	112
144	Room Temperature Ionic Liquid as Electrolyte for Lithium-Ion Battery. ECS Transactions, 2013, 50, 57-68.	0.3	3

#	Article	IF	CITATIONS
145	Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder. Physical Chemistry Chemical Physics, 2012, 14, 13515.	1.3	167
146	Highâ€Performance LiNi _{0.5} Mn _{1.5} O ₄ Spinel Controlled by Mn ³⁺ Concentration and Site Disorder. Advanced Materials, 2012, 24, 2109-2116.	11.1	434
147	The effects of N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide–based electrolyte on the electrochemical performance of high capacity cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2. Electrochimica Acta, 2012, 59, 14-22.	2.6	52
148	Reinvestigation on the state-of-the-art nonaqueous carbonate electrolytes for 5ÂV Li-ion battery applications. Journal of Power Sources, 2012, 213, 304-316.	4.0	69
149	Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) (PDBS) as a cathode material for lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 4125.	6.7	136
150	Sol–gel synthesis and electrochemical properties of fluorophosphates Na2Fe1â^'xMnxPO4F/C (x = 0, 0.1,) Tj ET 21, 18630.	Qq0 0 0 r 6.7	gBT /Overloc 88
151	A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery. Electrochimica Acta, 2011, 56, 3071-3078.	2.6	289
152	The effects of quenching treatment and AlF3 coating on LiNi0.5Mn0.5O2 cathode materials for lithium-ion battery. Materials Chemistry and Physics, 2010, 119, 519-523.	2.0	43
153	The Effects of AlF[sub 3] Coating on the Performance of Li[Li[sub 0.2]Mn[sub 0.54]Ni[sub 0.13]Co[sub 0.13]]O[sub 2] Positive Electrode Material for Lithium-Ion Battery. Journal of the Electrochemical Society, 2008, 155, A775	1.3	284