
Chahan Yeretzian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4755078/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of different coffee storage methods on coffee freshness after opening of packages. Food Packaging and Shelf Life, 2022, 33, 100893.	3.3	7
2	Modulation of aroma release of instant coffees through microparticles of roasted coffee oil. Food Chemistry, 2021, 341, 128193.	4.2	12
3	The role of ultrasound-assisted emulsification of roasted coffee oil on aroma profile in spray-dried microparticles and its dynamic release by PTR-ToF–MS. European Food Research and Technology, 2021, 247, 865-878.	1.6	5
4	Ultrasound-Assisted Emulsification of Roasted Coffee Oil in Complex Coacervates and Real-time Coffee Aroma Release by PTR-ToF–MS. Food and Bioprocess Technology, 2021, 14, 1857-1871.	2.6	3
5	Extraction of single serve coffee capsules: linking properties of ground coffee to extraction dynamics and cup quality. Scientific Reports, 2020, 10, 17079.	1.6	5
6	Extraction kinetics of tea aroma compounds as a function brewing temperature, leaf size and water hardness. Flavour and Fragrance Journal, 2020, 35, 365-375.	1.2	10
7	Novel experimental approach to study aroma release upon reconstitution of instant coffee products. Food Chemistry, 2020, 317, 126455.	4.2	13
8	Prevention of lipid oxidation in linseed oil using a palladium-based oxygen scavenging film. Food Packaging and Shelf Life, 2020, 24, 100488.	3.3	28
9	Impact of consumer behavior on furan and furan-derivative exposure during coffee consumption. A comparison between brewing methods and drinking preferences. Food Chemistry, 2019, 272, 514-522.	4.2	42
10	Influence of lipid content and stirring behaviour on furan and furan derivative exposure in filter coffee. Food Chemistry, 2019, 286, 22-28.	4.2	6
11	On-line analysis of coffee roasting with ion mobility spectrometry–mass spectrometry (IMS–MS). International Journal of Mass Spectrometry, 2018, 424, 49-57.	0.7	40
12	Quantitative assessment of specific defects in roasted ground coffee via infrared-photoacoustic spectroscopy. Food Chemistry, 2018, 255, 132-138.	4.2	34
13	Time-Resolved Gravimetric Method To Assess Degassing of Roasted Coffee. Journal of Agricultural and Food Chemistry, 2018, 66, 5293-5300.	2.4	14
14	Data on roasted coffee with specific defects analyzed by infrared-photoacoustic spectroscopy and chemometrics. Data in Brief, 2018, 20, 242-249.	0.5	5
15	Inactivation of Palladiumâ€based Oxygen Scavenger System by Volatile Sulfur Compounds Present in the Headspace of Packaged Food. Packaging Technology and Science, 2017, 30, 427-442.	1.3	10
16	Understanding the Effects of Roasting on Antioxidant Components of Coffee Brews by Coupling Onâ€line ABTS Assay to High Performance Size Exclusion Chromatography. Phytochemical Analysis, 2017, 28, 106-114.	1.2	23
17	Water for Extractionâ \in "Composition, Recommendations, and Treatment. , 2017, , 381-398.		5

18 Protecting the Flavors—Freshness as a Key to Quality. , 2017, , 329-353.

#	Article	IF	CITATIONS
19	Persistence of aroma volatiles in the oral and nasal cavities: real-time monitoring of decay rate in air exhaled through the nose and mouth. Journal of Breath Research, 2016, 10, 036005.	1.5	15
20	Rapid and direct volatile compound profiling of black and green teas (Camellia sinensis) from different countries with PTR-ToF-MS. Talanta, 2016, 152, 45-53.	2.9	44
21	Extraction kinetics of coffee aroma compounds using a semi-automatic machine: On-line analysis by PTR-ToF-MS. International Journal of Mass Spectrometry, 2016, 401, 22-30.	0.7	44
22	Investigating Coffee Samples by Raman Spectroscopy for Quality Control - Preliminary Study. International Journal of Experimental Spectroscopic Techniques, 2016, 1, 1-5.	0.3	7
23	Real-Time Mass Spectrometry Monitoring of Oak Wood Toasting: Elucidating Aroma Development Relevant to Oak-aged Wine Quality. Scientific Reports, 2015, 5, 17334.	1.6	20
24	Free Radical Processes in Coffee I—Solid Samples. , 2015, , 559-566.		3
25	Differentiation of degrees of ripeness of Catuai and Tipica green coffee by chromatographical and statistical techniques. Food Chemistry, 2015, 174, 637-642.	4.2	43
26	Free Radical Processes in Coffee II—Liquids. , 2015, , 567-574.		2
27	Temperature dependence of Henry's law constants: An automated, high-throughput gas stripping cell design coupled to PTR-ToF-MS. International Journal of Mass Spectrometry, 2015, 387, 69-77.	0.7	13
28	Sustainability Code / Load Index for the Semi-quantitative Assessment of Analytical Methods in a Research Environment: Proof of Concept. Environment and Ecology Research, 2015, 3, 158-177.	0.1	1
29	Antioxidant Generation during Coffee Roasting: A Comparison and Interpretation from Three Complementary Assays. Foods, 2014, 3, 586-604.	1.9	24
30	Freshness Indices of Roasted Coffee: Monitoring the Loss of Freshness for Single Serve Capsules and Roasted Whole Beans in Different Packaging. Chimia, 2014, 68, 179.	0.3	18
31	Insight into the Time-Resolved Extraction of Aroma Compounds during Espresso Coffee Preparation: Online Monitoring by PTR-ToF-MS. Analytical Chemistry, 2014, 86, 11696-11704.	3.2	36
32	Methodology for the Measurement of Antioxidant Capacity of Coffee. , 2014, , 253-264.		16
33	Evidence of different flavour formation dynamics by roasting coffee from different origins: On-line analysis with PTR-ToF-MS. International Journal of Mass Spectrometry, 2014, 365-366, 324-337.	0.7	112
34	Comparison of nine common coffee extraction methods: instrumental and sensory analysis. European Food Research and Technology, 2013, 236, 607-627.	1.6	217
35	Onâ€line process monitoring of coffee roasting by resonant laser ionisation timeâ€ofâ€flight mass spectrometry: bridging the gap from industrial batch roasting to flavour formation inside an individual coffee bean. Journal of Mass Spectrometry, 2013, 48, 1253-1265.	0.7	35
36	How does roasting affect the antioxidants of a coffee brew? Exploring the antioxidant capacity of coffee via on-line antioxidant assays coupled with size exclusion chromatography. Food and Function, 2013, 4, 1082.	2.1	34

#	Article	IF	CITATIONS
37	Probing Free Radical Processes during Storage of Extracts from Whole Roasted Coffee Beans: Impact of O2 Exposure during Extraction and Storage. Journal of Agricultural and Food Chemistry, 2013, 61, 3301-3305.	2.4	2
38	Modeling and Validation of Heat and Mass Transfer in Individual Coffee Beans during the Coffee Roasting Process Using Computational Fluid Dynamics (CFD). Chimia, 2013, 67, 291.	0.3	11
39	On-line process monitoring of coffee roasting by resonant laser ionisation time-of-flight mass spectrometry: bridging the gap from industrial batch roasting to flavour formation inside an individual coffee bean. Journal of Mass Spectrometry, 2013, 48, i-i.	0.7	1
40	Quality aspects of coffees and teas: Application of electron paramagnetic resonance (EPR) spectroscopy to the elucidation of free radical and other processes Agricultural Sciences, 2013, 04, 433-442.	0.2	3
41	On-Line Process Control of the Roast Degree of Coffee. Chimia, 2012, 66, 443.	0.3	6
42	Effect of roasting conditions and grinding on free radical contents of coffee beans stored in air. Food Chemistry, 2012, 131, 811-816.	4.2	23
43	Online monitoring of coffee roasting by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS): towards a real-time process control for a consistent roast profile. Analytical and Bioanalytical Chemistry, 2012, 402, 2531-2543.	1.9	55
44	Quantification of the Robusta Fraction in a Coffee Blend via Raman Spectroscopy: Proof of Principle. Journal of Agricultural and Food Chemistry, 2011, 59, 9074-9079.	2.4	58
45	Real time monitoring of free radical processes during the roasting of coffee beans using electron paramagnetic resonance spectroscopy. Food Chemistry, 2011, 125, 248-254.	4.2	23
46	PTR-MS monitoring of VOCs and BVOCs in food science and technology. TrAC - Trends in Analytical Chemistry, 2011, 30, 968-977.	5.8	167
47	Direct-injection mass spectrometry adds the time dimension to (B)VOC analysis. TrAC - Trends in Analytical Chemistry, 2011, 30, 1003-1017.	5.8	144
48	Expression of Multidisciplinary Flavor Science: Research Highlights from the 12th Weurman Symposium. Journal of Agricultural and Food Chemistry, 2009, 57, 9857-9859.	2.4	5
49	When Machine Tastes Coffee: Successful Prediction of Coffee Sensory Profiles by Instrumental Methods Based on On-line PTR-MS. Chimia, 2009, 63, 292-292.	0.3	4
50	When Machine Tastes Coffee:  Instrumental Approach To Predict the Sensory Profile of Espresso Coffee. Analytical Chemistry, 2008, 80, 1574-1581.	3.2	84
51	Unambiguous Identification of Volatile Organic Compounds by Proton-Transfer Reaction Mass Spectrometry Coupled with GC/MS. Analytical Chemistry, 2005, 77, 4117-4124.	3.2	87
52	Individualization of Flavor Preferences: Toward a Consumer-centric and Individualized Aroma Science. Comprehensive Reviews in Food Science and Food Safety, 2004, 3, 152-159.	5.9	26
53	Laser Mass Spectrometry as On-Line Sensor for Industrial Process Analysis:Â Process Control of Coffee Roasting. Analytical Chemistry, 2004, 76, 1386-1402.	3.2	111
54	Analysing the headspace of coffee by proton-transfer-reaction mass-spectrometry. International Journal of Mass Spectrometry, 2003, 223-224, 115-139.	0.7	97

#	Article	IF	CITATIONS
55	Dynamic measurements of partition coefficients using proton-transfer-reaction mass spectrometry (PTR–MS). International Journal of Mass Spectrometry, 2003, 223-224, 383-395.	0.7	55
56	Breath-by-breath analysis of banana aroma by proton transfer reaction mass spectrometry. International Journal of Mass Spectrometry, 2003, 223-224, 743-756.	0.7	79
57	Liquid–air partitioning of volatile compounds in coffee: dynamic measurements using proton-transfer-reaction mass spectrometry. International Journal of Mass Spectrometry, 2003, 228, 69-80.	0.7	38
58	Proton Transfer Reaction Mass Spectrometry, a Tool for On-Line Monitoring of Acrylamide Formation in the Headspace of Maillard Reaction Systems and Processed Food. Analytical Chemistry, 2003, 75, 5488-5494.	3.2	75
59	Real-Time Monitoring of 4-Vinylguaiacol, Guaiacol, and Phenol during Coffee Roasting by Resonant Laser Ionization Time-of-Flight Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2003, 51, 5768-5773.	2.4	95
60	Comparison of Nosespace, Headspace, and Sensory Intensity Ratings for the Evaluation of Flavor Absorption by Fat. Journal of Agricultural and Food Chemistry, 2003, 51, 3636-3642.	2.4	94
61	The Elusiveness of Coffee Aroma:Â New Insights from a Non-empirical Approach. Journal of Agricultural and Food Chemistry, 2003, 51, 3092-3096.	2.4	12
62	Nosespace Analysis with Proton-Transfer-Reaction Mass Spectrometry. Food Additives, 2003, , .	0.1	2
63	Characterization of Free Radicals in Soluble Coffee by Electron Paramagnetic Resonance Spectroscopy. Journal of Agricultural and Food Chemistry, 2002, 50, 6114-6122.	2.4	35
64	Degradation of the Coffee Flavor Compound Furfuryl Mercaptan in Model Fenton-type Reaction Systems. Journal of Agricultural and Food Chemistry, 2002, 50, 2356-2364.	2.4	58
65	From the green bean to the cup of coffee: investigating coffee roasting by on-line monitoring of volatiles. European Food Research and Technology, 2002, 214, 92-104.	1.6	153
66	Characterisation of the aroma of green Mexican coffee and identification of mouldy/earthy defect. European Food Research and Technology, 2001, 212, 648-657.	1.6	61
67	On-Line Monitoring of Coffee Roasting by Proton-Transfer-Reaction Mass-Spectrometry. ACS Symposium Series, 2000, , 112-123.	0.5	14
68	Degradation of Furfuryl Mercaptan in Fenton-Type Model Systems. ACS Symposium Series, 2000, , 230-240.	0.5	0
69	Time-Resolved Headspace Analysis by Proton-Transfer-Reaction Mass-Spectrometry. ACS Symposium Series, 2000, , 58-72.	0.5	18
70	Laser ionization mass spectrometry (REMPI-TOFMS) for on-line analysis of volatiles in food science: Coffee-roasting and headspace experiments. AIP Conference Proceedings, 1998, , .	0.3	1
71	Account: ZEKE spectroscopy: high resolution laser spectroscopy in a modified time-of-flight mass spectrometer. European Journal of Mass Spectrometry, 1996, 2, 3.	0.7	1
72	Application of Laser Ionization Mass Spectrometry for On-line Monitoring of Volatiles in the Headspace of Food Products: Roasting and Brewing of Coffee. Rapid Communications in Mass Spectrometry, 1996, 10, 1975-1979.	0.7	52

#	Article	IF	CITATIONS
73	NaxAu and CsxAu bimetal clusters: Finite size analogs of sodium–gold and cesium–gold compounds. Journal of Chemical Physics, 1996, 105, 5574-5585.	1.2	67
74	Na6Pb: a bimetallic cluster of striking stability. Chemical Physics Letters, 1995, 237, 334-338.	1.2	40
75	On the electronic and geometric structure of bimetallic clusters. A comparison of the novel cluster Na6Pb to Na6Mg. Chemical Physics Letters, 1995, 245, 671-678.	1.2	20
76	Breakdown of the Born-Oppenheimer approximation in ZEKE states of Ag2. Chemical Physics Letters, 1995, 239, 61-66.	1.2	25
77	Electronic structure effects in bimetallic MxN clusters (M = alkali, N = divalent metal). The Journal of Physical Chemistry, 1995, 99, 123-130.	2.9	39
78	A simple rate equation for fullerene coalescence. Chemical Physics Letters, 1994, 218, 462-466.	1.2	13
79	High-resolution spectroscopy of Ag+2 via long-lived ZEKE states. Chemical Physics Letters, 1994, 228, 1-8.	1.2	50
80	Cluster—surface scattering in a reflectron collider: probing fullerenes by surface impact. International Journal of Mass Spectrometry and Ion Processes, 1994, 135, 79-118.	1.9	49
81	Cleavage patterns of carbon clusters from impact-induced fragmentation of Câ^'N, N = 10–50. International Journal of Mass Spectrometry and Ion Processes, 1994, 138, 63-76.	1.9	14
82	Physikalische und Theoretische Chemie 1993. Nachrichten Aus Der Chemie, 1994, 42, 181-191.	0.0	1
83	Coalescence reactions of fullerenes. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1993, 26, 300-304.	1.0	11
84	Rates of Electron Emission from Negatively Charged, Impact-Heated Fullerenes. Science, 1993, 260, 652-656.	6.0	59
85	Synthesis and x-ray structure of a Diels-Alder adduct of fullerene C60. Journal of the American Chemical Society, 1993, 115, 344-345.	6.6	270
86	Partial separation of fullerenes by gradient sublimation. The Journal of Physical Chemistry, 1993, 97, 10097-10101.	2.9	56
87	Surface scattering of C60+: Recoil velocities and yield of C60. Journal of Chemical Physics, 1993, 98, 7480-7484.	1.2	44
88	Electron emission mechanism for impact of carbon (CN-) and silicon (SiN-) clusters. The Journal of Physical Chemistry, 1992, 96, 9100-9104.	2.9	25
89	Fullerenes Under Extreme Temperatures and Stress: Collisions of Fullerenes With Surfaces and With Other Fullerenes. International Journal of Modern Physics B, 1992, 06, 3801-3814.	1.0	17
90	Endohedral rare-earth fullerene complexes. The Journal of Physical Chemistry, 1992, 96, 6869-6871.	2.9	133

#	Article	IF	CITATIONS
91	Fullerene formation in sputtering and electron beam evaporation processes. The Journal of Physical Chemistry, 1992, 96, 6866-6869.	2.9	51
92	Coalescence reactions of fullerenes. Nature, 1992, 359, 44-47.	13.7	236
93	Delayed emission of electrons from C60 following energetic impact against graphite. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1992, 24, 199-202.	1.0	46
94	Collisional probes and possible structures of La2C80. Chemical Physics Letters, 1992, 196, 337-342.	1.2	50
95	Sodium cluster ionisation potentials revisited: Higher-resolution measurements for Nax (x<23) and their relation to bonding models. Chemical Physics Letters, 1988, 143, 251-258.	1.2	194
96	Shell closings and geometric structure effects. A systematic approach to the interpretation of abundance distributions observed in photoionisation mass spectra for alkali cluster beams. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1986, 3, 115-119.	1.0	27
97	Shell Closings and Geometric Structure Effects. A Systematic Approach to the Interpretation of Abundance Distributions Observed in Photoionisation Mass Spectra for Alkali Cluster Beams. , 1986, , 15-19.		0