Jonathan R Whitfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4753633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MYC Inhibition Halts Metastatic Breast Cancer Progression by Blocking Growth, Invasion, and Seeding. Cancer Research Communications, 2022, 2, 110-130.	1.7	10
2	An "-omycs―Toolbox to Work with MYC. Methods in Molecular Biology, 2021, 2318, 1-11.	0.9	0
3	The Wnt signaling receptor Fzd9 is essential for Myc-driven tumorigenesis in pancreatic islets. Life Science Alliance, 2021, 4, e201900490.	2.8	4
4	The long journey to bring a Myc inhibitor to the clinic. Journal of Cell Biology, 2021, 220, .	5.2	51
5	Frequent mutations of FBXO11 highlight BCL6 as a therapeutic target in Burkitt lymphoma. Blood Advances, 2021, 5, 5239-5257.	5.2	7
6	Editorial overview: Peptides in cancer. Current Opinion in Pharmacology, 2019, 47, iii-v.	3.5	0
7	Intrinsic cell-penetrating activity propels Omomyc from proof of concept to viable anti-MYC therapy. Science Translational Medicine, 2019, 11, .	12.4	150
8	BET inhibition is an effective approach against KRAS-driven PDAC and NSCLC. Oncotarget, 2018, 9, 18734-18746.	1.8	12
9	Strategies to Inhibit Myc and Their Clinical Applicability. Frontiers in Cell and Developmental Biology, 2017, 5, 10.	3.7	230
10	Abstract 2167: Preclinical validation of an Omomyc cell-penetrating peptide as a viable anti-Myc therapy. , 2017, , .		0
11	Tamoxifen Administration to Mice. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot077966.	0.3	27
12	Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis, 2015, 36, S254-S296.	2.8	239
13	The effect of environmental chemicals on the tumor microenvironment. Carcinogenesis, 2015, 36, S160-S183.	2.8	97
14	The Estrogen Receptor Fusion System in Mouse Models: A Reversible Switch. Cold Spring Harbor Protocols, 2015, 2015, pdb.top069815.	0.3	12
15	Ibrutinib Exerts Potent Antifibrotic and Antitumor Activities in Mouse Models of Pancreatic Adenocarcinoma. Cancer Research, 2015, 75, 1675-1681.	0.9	95
16	Abstract 2645: Preclinical validation of Myc inhibition by a new generation of Omomyc-based inhibitors. , 2015, , .		0
17	Abstract B23: Pushing Myc inhibition towards the clinic by direct delivery of cell-penetrating peptides. , 2015, , .		0
18	Abstract PR10: Preclinical validation of Myc inhibition by a new generation of Omomyc-based cell		0

penetrating peptides., 2015,,.

JONATHAN R WHITFIELD

#	Article	IF	CITATIONS
19	Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis. Nature Communications, 2014, 5, 4632.	12.8	144
20	Sequential Cdk1 and Plk1 phosphorylation of protein tyrosine phosphatase 1B promotes mitotic cell death. Cell Death and Disease, 2013, 4, e468-e468.	6.3	19
21	Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes and Development, 2013, 27, 504-513.	5.9	250
22	Abstract 4956: Pharmacological inhibition of Bruton's Tyrosine Kinase (BTK) as a therapy for insulinoma and pancreatic ductal adenocarcinoma , 2013, , .		0
23	Tumor microenvironment: becoming sick of Myc. Cellular and Molecular Life Sciences, 2012, 69, 931-934.	5.4	63
24	Modelling Myc inhibition as a cancer therapy. Nature, 2008, 455, 679-683.	27.8	706
25	Specific Requirement for Bax, Not Bak, in Myc-induced Apoptosis and Tumor Suppression in Vivo. Journal of Biological Chemistry, 2006, 281, 10890-10895.	3.4	54
26	The neuroprotective action of JNK3 inhibitors based on the 6,7-dihydro-5H-pyrrolo[1,2-a]imidazole scaffold. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4666-4670.	2.2	49
27	Immunocytochemical Techniques for Studying Apoptosis in Primary Sympathetic Neurons. , 2004, 282, 169-178.		1
28	High-throughput methods to detect dimerization of Bcl-2 family proteins. Analytical Biochemistry, 2003, 322, 170-178.	2.4	13
29	Dominant-Negative c-Jun Promotes Neuronal Survival by Reducing BIM Expression and Inhibiting Mitochondrial Cytochrome c Release. Neuron, 2001, 29, 629-643.	8.1	528
30	Transforming Growth Factor β (TGFβ) Mediates Schwann Cell Death <i>In Vitro</i> and <i>In Vivo</i> Examination of c-Jun Activation, Interactions with Survival Signals, and the Relationship of TGFβ-Mediated Death to Schwann Cell Differentiation. Journal of Neuroscience, 2001, 21, 8572-8585.	3.6	104
31	Direct inhibition of câ€Jun Nâ€terminal kinase in sympathetic neurones prevents <i>câ€Jun</i> promoter activation and NGF withdrawalâ€induced death. Journal of Neurochemistry, 2001, 76, 1439-1454.	3.9	94
32	c-Jun and the transcriptional control of neuronal apoptosis. Biochemical Pharmacology, 2000, 60, 1015-1021.	4.4	218
33	c-Jun and Bax: regulators of programmed cell death in developing neurons. Biochemical Society Transactions, 1999, 27, 790-797.	3.4	13
34	Role of the Jun Kinase Pathway in the Regulation of c-Jun Expression and Apoptosis in Sympathetic Neurons. Journal of Neuroscience, 1998, 18, 1713-1724.	3.6	276
35	Assembly of GABAAReceptors Composed of α1 and β2 Subunits in Both Cultured Neurons and Fibroblasts. Journal of Neuroscience, 1997, 17, 6587-6596.	3.6	117
36	A c-jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron, 1995, 14, 927-939.	8.1	792