
Omid Norouzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4753515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Product evaluation of hydrothermal carbonization of biomass: semi-continuous vs. batch feeding. Biomass Conversion and Biorefinery, 2022, 12, 15-25.	2.9	17
2	A state-of-the-art review on algae pyrolysis for bioenergy and biochar production. Bioresource Technology, 2022, 346, 126258.	4.8	79
3	An investigation for improving dry anaerobic digestion of municipal solid wastes by adding biochar derived from gasification of wood pellets. Renewable Energy, 2022, 186, 1-9.	4.3	13
4	The Current Status and Future Potential of Biogas Production from Canada's Organic Fraction Municipal Solid Waste. Energies, 2022, 15, 475.	1.6	17
5	Hydrothermal liquefaction of green macroalgae Cladophora glomerata: Effect of functional groups on the catalytic performance of graphene oxide/polyurethane composite. Catalysis Today, 2022, 404, 93-104.	2.2	10
6	In vitro plant tissue culture as the fifth generation of bioenergy. Scientific Reports, 2022, 12, 5038.	1.6	14
7	Technologies for the production of renewable natural gas from organic wastes and their opportunities in existing Canadian pipelines. Fuel Communications, 2022, 11, 100056.	2.0	5
8	Integrated hybrid architecture of metal and biochar for high performance asymmetric supercapacitors. Scientific Reports, 2021, 11, 5387.	1.6	37
9	Design of a ternary 3D composite from hydrochar, zeolite and magnetite powder for direct conversion of biomass to gasoline. Chemical Engineering Journal, 2021, 410, 128323.	6.6	11
10	Effects of FeCl ₃ Catalytic Hydrothermal Carbonization on Chemical Activation of Corn Wet Distillers' Fiber. ACS Omega, 2021, 6, 14875-14886.	1.6	15
11	Miscanthus to Biocarbon for Canadian Iron and Steel Industries: An Innovative Approach. Energies, 2021, 14, 4493.	1.6	2
12	What is the best catalyst for biomass pyrolysis?. Journal of Analytical and Applied Pyrolysis, 2021, 158, 105280.	2.6	38
13	Anaerobic co-digestion of sewage sludge and slaughterhouse waste in existing wastewater digesters. Renewable Energy, 2020, 145, 2503-2509.	4.3	39
14	Review of biochar role as additive in anaerobic digestion processes. Renewable and Sustainable Energy Reviews, 2020, 131, 110037.	8.2	153
15	New Insights for the Future Design of Composites Composed of Hydrochar and Zeolite for Developing Advanced Biofuels from Cranberry Pomace. Energies, 2020, 13, 6600.	1.6	5
16	Numerical Comparison of a Combined Hydrothermal Carbonization and Anaerobic Digestion System with Direct Combustion of Biomass for Power Production. Processes, 2020, 8, 43.	1.3	28
17	Biochar-based composites as electrode active materials in hybrid supercapacitors with particular focus on surface topography and morphology. Journal of Energy Storage, 2020, 29, 101291.	3.9	34
18	A study on potential recovery of energy and value-added chemicals from in-situ pyrolysis of Bambusa balcooa over basic metal oxides. Journal of Analytical and Applied Pyrolysis, 2020, 147, 104801.	2.6	7

Omid Norouzi

#	Article	IF	CITATIONS
19	Experimental studies on high-quality bio-oil production via pyrolysis of Azolla by the use of a three metallic/modified pyrochar catalyst. Bioresource Technology, 2019, 291, 121802.	4.8	26
20	Superior activity of metal oxide biochar composite in hydrogen evolution under artificial solar irradiation: A promising alternative to conventional metal-based photocatalysts. International Journal of Hydrogen Energy, 2019, 44, 28698-28708.	3.8	26
21	Prediction of Hydrothermal Carbonization with Respect to the Biomass Components and Severity Factor. Energy & Fuels, 2019, 33, 9916-9924.	2.5	45
22	Two-step synthesis of nanohusk Fe3O4 embedded in 3D network pyrolytic marine biochar for a new generation of anode materials for Lithium-Ion batteries. Journal of Alloys and Compounds, 2019, 786, 930-937.	2.8	60
23	Magnetic biochar obtained through catalytic pyrolysis of macroalgae: A promising anode material for Li-ion batteries. Renewable Energy, 2019, 140, 704-714.	4.3	63
24	The effectiveness of anaerobic digestion of bio-waste in replacing primary energies: An EU28 case study. Renewable and Sustainable Energy Reviews, 2019, 108, 347-354.	8.2	25
25	Synthesis and Design of Engineered Biochars as Electrode Materials in Energy Storage Systems. Biofuels and Biorefineries, 2019, , 233-265.	0.5	6
26	Superior visible-light photocatalytic activity of biocarbon derived from sewage sludge in the absence of active phase for hydrogen production. AIP Conference Proceedings, 2019, , .	0.3	1
27	Improving the Electrochemical Performance of Carbon Anodes Derived from Marine Biomass by Using Ionic-Liquid-Based Hybrid Electrolyte for LIBs. Journal of Electronic Materials, 2019, 48, 951-963.	1.0	14
28	Synthesis of a Novel Interconnected 3D Pore Network Algal Biochar Constituting Iron Nanoparticles Derived from a Harmful Marine Biomass as High-Performance Asymmetric Supercapacitor Electrodes. ACS Sustainable Chemistry and Engineering, 2018, 6, 4746-4758.	3.2	117
29	Pyrolysis of marine biomass to produce bio-oil and its upgrading using a novel multi-metal catalyst prepared from the spent car catalytic converter. Bioresource Technology, 2018, 249, 473-478.	4.8	26
30	A short review of comparative energy, economic and environmental assessment of different biogas-based power generation technologies. Energy Procedia, 2018, 148, 846-851.	1.8	11
31	Catalytic Effect of Functional and Fe Composite Biochars on Biofuel and Biochemical Derived from the Pyrolysis of Green Marine Biomass. Fermentation, 2018, 4, 96.	1.4	15
32	Catalytic conversion of Venice lagoon brown marine algae for producing hydrogen-rich gas and valuable biochemical using algal biochar and Ni/SBA-15 catalyst. International Journal of Hydrogen Energy, 2018, 43, 19918-19929.	3.8	55
33	Steam reforming of bagasse to hydrogen and synthesis gas using ruthenium promoted Ni Fe/Î ³ Al2O3nano-catalysts. International Journal of Hydrogen Energy, 2017, 42, 5505-5512.	3.8	30
34	Hydrothermal gasification performance of Enteromorpha intestinalis as an algal biomass for hydrogen-rich gas production using Ru promoted Fe–Ni/γ-Al 2 O 3 nanocatalysts. Energy Conversion and Management, 2017, 141, 63-71.	4.4	97
35	Catalytic upgrading of bio-products derived from pyrolysis of red macroalgae Gracilaria gracilis with a promising novel micro/mesoporous catalyst. Bioresource Technology, 2017, 243, 1-8.	4.8	45
36	Turning an environmental problem into an opportunity: potential use of biochar derived from a harmful marine biomass named Cladophora glomerata as anode electrode for Li-ion batteries. Environmental Science and Pollution Research, 2017, 24, 27974-27984.	2.7	48

#	Article	IF	CITATIONS
37	Study of micro/macro ordered porous carbon with olive-shaped structure derived from Cladophora glomerata macroalgae as efficient working electrodes of supercapacitors. Biomass and Bioenergy, 2017, 107, 287-298.	2.9	93
38	Hydrothermal gasification of Cladophora glomerata macroalgae over its hydrochar as a catalyst for hydrogen-rich gas production. Bioresource Technology, 2016, 222, 232-241.	4.8	96
39	Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char. Bioresource Technology, 2016, 219, 643-651.	4.8	113