List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4753458/publications.pdf Version: 2024-02-01

КАН СНИМ ГАШ

#	Article	IF	CITATIONS
1	First-Principles Study of Amorphous Al2O3 ALD Coating in Li-S Battery Electrode Design. Energies, 2022, 15, 390.	1.6	3
2	Machine-Learning Model Prediction of Ionic Liquids Melting Points. Applied Sciences (Switzerland), 2022, 12, 2408.	1.3	6
3	K ⁺ Single Cation Ionic Liquids Electrolytes with Low Melting Asymmetric Salt. Journal of Physical Chemistry C, 2022, 126, 11407-11413.	1.5	8
4	Implication of Mechanical Properties of Li-S Binary Compounds Obtained from the First-Principles Study. Journal of Physical Chemistry C, 2021, 125, 290-294.	1.5	9
5	A XANES study of lithium polysulfide solids: a first-principles study. Materials Advances, 2021, 2, 6403-6410.	2.6	6
6	Two-Dimensional Nanomaterials as Anticorrosion Surface Coatings for Uranium Metal: Physical Insights from First-Principles Theory. ACS Applied Nano Materials, 2021, 4, 5038-5046.	2.4	4
7	Electronic properties of Ir3Li and ultra-nanocrystalline lithium superoxide formation. Nano Energy, 2021, 90, 106549.	8.2	3
8	Unusual Melting Trend in an Alkali Asymmetric Sulfonamide Salt Series: Single-Crystal Analysis and Modeling. Inorganic Chemistry, 2021, 60, 14679-14686.	1.9	5
9	Molecular Layer Deposition of Crosslinked Polymeric Lithicone for Superior Lithium Metal Anodes. Energy Material Advances, 2021, 2021, .	4.7	27
10	Highly stable potassium metal batteries enabled by regulating surface chemistry in ether electrolyte. Energy Storage Materials, 2021, 42, 526-532.	9.5	37
11	Computational study of the adsorption of bimetallic clusters on alumina substrate. Surface Science, 2020, 700, 121682.	0.8	2
12	Novel Metallic Crystalline Phase of Li2S3. Journal of Physical Chemistry C, 2019, 123, 28027-28034.	1.5	3
13	<i>In Situ</i> Formed Ir ₃ Li Nanoparticles as Active Cathode Material in Li–Oxygen Batteries. Journal of Physical Chemistry A, 2019, 123, 10047-10056.	1.1	11
14	Artificial Solidâ€Electrolyte Interphase Enabled Highâ€Capacity and Stable Cycling Potassium Metal Batteries. Advanced Energy Materials, 2019, 9, 1902697.	10.2	81
15	Nitrogen-Doped Graphene on Copper: Edge-Guided Doping Process and Doping-Induced Variation of Local Work Function. Journal of Physical Chemistry C, 2019, 123, 8802-8812.	1.5	7
16	Microwave growth and tunable photoluminescence of nitrogen-doped graphene and carbon nitride quantum dots. Journal of Materials Chemistry C, 2019, 7, 5468-5476.	2.7	75
17	Thermodynamic and Mechanical Stability of Crystalline Phases of Li2S2. Journal of Physical Chemistry C, 2019, 123, 4674-4681.	1.5	16
18	Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nature Energy, 2019, 4, 957-968.	19.8	349

#	Article	IF	CITATIONS
19	Identification and Implications of Lithium Superoxide in Li–O ₂ Batteries. ACS Energy Letters, 2018, 3, 1105-1109.	8.8	47
20	A lithium–oxygen battery with a long cycle life in an air-like atmosphere. Nature, 2018, 555, 502-506.	13.7	433
21	Structure–Property of Lithium–Sulfur Nanoparticles via Molecular Dynamics Simulation. ACS Applied Materials & Interfaces, 2018, 10, 37575-37585.	4.0	15
22	Exploring Stability of Nonaqueous Electrolytes for Potassium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 1828-1833.	2.5	78
23	Atomic and Molecular Layer Deposition for Superior Lithiumâ€Sulfur Batteries: Strategies, Performance, and Mechanisms. Batteries and Supercaps, 2018, 1, 41-68.	2.4	50
24	Lithium Superoxide Hydrolysis and Relevance to Li–O ₂ Batteries. Journal of Physical Chemistry C, 2017, 121, 9657-9661.	1.5	41
25	Mass and charge transport relevant to the formation of toroidal lithium peroxide nanoparticles in an aprotic lithium-oxygen battery: An experimental and theoretical modeling study. Nano Research, 2017, 10, 4327-4336.	5.8	12
26	Elucidating the Solvation Structure and Dynamics of Lithium Polysulfides Resulting from Competitive Salt and Solvent Interactions. Chemistry of Materials, 2017, 29, 3375-3379.	3.2	117
27	Dendrite-Free Potassium–Oxygen Battery Based on a Liquid Alloy Anode. ACS Applied Materials & Interfaces, 2017, 9, 31871-31878.	4.0	72
28	Computational Studies of Solubilities of LiO ₂ and Li ₂ O ₂ in Aprotic Solvents. Journal of the Electrochemical Society, 2017, 164, E3696-E3701.	1.3	26
29	Morse-Smale Analysis of Ion Diffusion in Ab Initio Battery Materials Simulations. Mathematics and Visualization, 2017, , 135-149.	0.4	3
30	Restricting the Solubility of Polysulfides in Liâ€ 5 Batteries Via Electrolyte Salt Selection. Advanced Energy Materials, 2016, 6, 1600160.	10.2	66
31	Solvent Effects on Polysulfide Redox Kinetics and Ionic Conductivity in Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2016, 163, A3111-A3116.	1.3	74
32	Effect of Hydrofluoroether Cosolvent Addition on Li Solvation in Acetonitrile-Based Solvate Electrolytes and Its Influence on S Reduction in a Li–S Battery. ACS Applied Materials & Interfaces, 2016, 8, 34360-34371.	4.0	58
33	Concentrated Electrolyte for the Sodium–Oxygen Battery: Solvation Structure and Improved Cycle Life. Angewandte Chemie, 2016, 128, 15536-15540.	1.6	20
34	Concentrated Electrolyte for the Sodium–Oxygen Battery: Solvation Structure and Improved Cycle Life. Angewandte Chemie - International Edition, 2016, 55, 15310-15314.	7.2	97
35	A lithium–oxygen battery based on lithium superoxide. Nature, 2016, 529, 377-382.	13.7	633
36	Interstitial and Interlayer Ion Diffusion Geometry Extraction in Graphitic Nanosphere Battery Materials. IEEE Transactions on Visualization and Computer Graphics, 2016, 22, 916-925.	2.9	19

#	Article	IF	CITATIONS
37	Microstructural Characterization of Air Electrode Architectures in Lithium-Oxygen Batteries. Microscopy and Microanalysis, 2015, 21, 1373-1374.	0.2	3
38	An atomistically informed mesoscale model for growth and coarsening during discharge in lithium-oxygen batteries. Journal of Chemical Physics, 2015, 143, 224113.	1.2	22
39	The Effect of Potassium Impurities Deliberately Introduced into Activated Carbon Cathodes on the Performance of Lithium–Oxygen Batteries. ChemSusChem, 2015, 8, 4235-4241.	3.6	13
40	Frontispiece: Implications of the Unpaired Spins in Li-O2Battery Chemistry and Electrochemistry: A Minireview. ChemPlusChem, 2015, 80, n/a-n/a.	1.3	0
41	Interfacial Effects on Lithium Superoxide Disproportionation in Li-O ₂ Batteries. Nano Letters, 2015, 15, 1041-1046.	4.5	92
42	Theoretical Exploration of Various Lithium Peroxide Crystal Structures in a Li-Air Battery. Energies, 2015, 8, 529-548.	1.6	13
43	A Mo ₂ C/Carbon Nanotube Composite Cathode for Lithium–Oxygen Batteries with High Energy Efficiency and Long Cycle Life. ACS Nano, 2015, 9, 4129-4137.	7.3	207
44	Review—Understanding and Mitigating Some of the Key Factors that Limit Non-Aqueous Lithium-Air Battery Performance. Journal of the Electrochemical Society, 2015, 162, A2439-A2446.	1.3	27
45	Implications of the Unpaired Spins in Li–O ₂ Battery Chemistry and Electrochemistry: A Minireview. ChemPlusChem, 2015, 80, 336-343.	1.3	17
46	Aprotic Electrolytes in Li–Air Batteries. Modern Aspects of Electrochemistry, 2014, , 445-466.	0.2	0
47	Probing the evolution and morphology of hard carbon spheres. Carbon, 2014, 68, 104-111.	5.4	44
48	Investigation of the Decomposition Mechanism of Lithium Bis(oxalate)borate (LiBOB) Salt in the Electrolyte of an Aprotic Li–O ₂ Battery. Energy Technology, 2014, 2, 348-354.	1.8	13
49	Effect of the size-selective silver clusters on lithium peroxide morphology in lithium–oxygen batteries. Nature Communications, 2014, 5, 4895.	5.8	186
50	Understanding Side Reactions in K–O ₂ Batteries for Improved Cycle Life. ACS Applied Materials & Interfaces, 2014, 6, 19299-19307.	4.0	117
51	Structure and Stability of Lithium Superoxide Clusters and Relevance to Li–O ₂ Batteries. Journal of Physical Chemistry Letters, 2014, 5, 813-819.	2.1	74
52	Raman Evidence for Late Stage Disproportionation in a Li–O ₂ Battery. Journal of Physical Chemistry Letters, 2014, 5, 2705-2710.	2.1	144
53	Atomistic and First Principles: Computational Studies of LiO2 Batteries. , 2014, , 159-177.		2
54	Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li–O2 batteries. Physical Chemistry Chemical Physics, 2013, 15, 5572.	1.3	76

#	Article	IF	CITATIONS
55	Interactions of Dimethoxy Ethane with Li ₂ O ₂ Clusters and Likely Decomposition Mechanisms for Li–O ₂ Batteries. Journal of Physical Chemistry C, 2013, 117, 8041-8049.	1.5	74
56	A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nature Communications, 2013, 4, 2383.	5.8	379
57	Disproportionation in Li–O ₂ Batteries Based on a Large Surface Area Carbon Cathode. Journal of the American Chemical Society, 2013, 135, 15364-15372.	6.6	282
58	Magnetism in Lithium–Oxygen Discharge Product. ChemSusChem, 2013, 6, 1196-1202.	3.6	23
59	Evidence for lithium superoxide-like species in the discharge product of a Li–O2 battery. Physical Chemistry Chemical Physics, 2013, 15, 3764.	1.3	188
60	Electronic Structure of Lithium Peroxide Clusters and Relevance to Lithium–Air Batteries. Journal of Physical Chemistry C, 2012, 116, 23890-23896.	1.5	64
61	Density Functional Investigation of the Thermodynamic Stability of Lithium Oxide Bulk Crystalline Structures as a Function of Oxygen Pressure. Journal of Physical Chemistry C, 2011, 115, 23625-23633.	1.5	89
62	Molecular dynamics simulation of yttria-stabilized zirconia (YSZ) crystalline and amorphous solids. Journal of Physics Condensed Matter, 2011, 23, 035401.	0.7	39
63	Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes. Journal of Physical Chemistry C, 2011, 115, 25535-25542.	1.5	166
64	Kinetic Monte Carlo simulation of the elementary electrochemistry in a hydrogen-powered solid oxide fuel cell. Journal of Power Sources, 2010, 195, 4177-4184.	4.0	18
65	Kinetic Monte Carlo Simulation of AC Impedance on the Cathode Side of a Solid Oxide Fuel Cell. Journal of the Electrochemical Society, 2010, 157, B90.	1.3	4
66	Atomistic Modeling of Solid Oxide Fuel Cells. Annual Reports in Computational Chemistry, 2010, , 201-234.	0.9	2
67	Structure and stability of Mg-intercalated boron nanotubes and crystalline bundles. Journal of Physics Condensed Matter, 2009, 21, 045304.	0.7	8
68	Kinetic Monte Carlo simulation of <mml:math xmins:mml="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math<br">altimg="si72.gif" display="inline" overflow="scroll"><mml:mrow><mml:msup><mml:mrow><mml:mtext>O</mml:mtext></mml:mrow><mml:mr incorporation in the yttria stabilized zirconia (YSZ) fuel cell. Chemical Physics Letters, 2009, 471,</mml:mr </mml:msup></mml:mrow></mml:math>	ow≯ ⊾₂ nml:	mn ≱ ⊉
69	Lattice dielectric and thermodynamic properties of yttria stabilized zirconia solids. Journal of Physics Condensed Matter, 2009, 21, 145402.	0.7	14
70	Boron and Boron Carbide Materials: Nanostructures and Crystalline Solids. , 2009, , 271-291.		2
71	Kinetic Monte Carlo simulation of the Yttria Stabilized Zirconia (YSZ) fuel cell cathode. Solid State Ionics, 2008, 179, 1912-1920.	1.3	20
72	Thermodynamic Stability of Novel Boron Sheet Configurations. Journal of Physical Chemistry B, 2008, 112, 10217-10220.	1.2	41

#	Article	IF	CITATIONS
73	First-principles study of crystalline bundles of single-walled boron nanotubes with small diameter. Journal of Physics Condensed Matter, 2008, 20, 125202.	0.7	15
74	Stability and Electronic Properties of Atomistically-Engineered 2D Boron Sheets. Journal of Physical Chemistry C, 2007, 111, 2906-2912.	1.5	166
75	Theoretical study of electron transport in boron nanotubes. Applied Physics Letters, 2006, 88, 212111.	1.5	41
76	First-principles study of the stability and electronic properties of sheets and nanotubes of elemental boron. Chemical Physics Letters, 2006, 418, 549-554.	1.2	65
77	A theoretical study of vibrational properties of neutral and cationic B12 clusters. International Journal of Quantum Chemistry, 2005, 102, 656-664.	1.0	27
78	A theoretical study of electronic and vibrational properties of neutral, cationic, and anionic B24 clusters. International Journal of Quantum Chemistry, 2005, 103, 866-874.	1.0	28
79	The 2D-3D structural transition and chemical bonding in elemental boron nanoclusters. Computing Letters, 2005, 1, 259-270.	0.5	7
80	Equilibrium geometry and electron detachment energies of anionic Cr2O4, Cr2O5, and Cr2O6 clusters. Chemical Physics Letters, 2004, 393, 112-117.	1.2	16
81	Structure, Energetics, Electronic, and Hydration Properties of Neutral and Anionic Al3O6, Al3O7, and Al3O8 Clusters. Journal of Physical Chemistry A, 2004, 108, 5081-5090.	1.1	23