
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4753258/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Effect of C <sub>60</sub> on the Photocatalytic Activity of TiO <sub>2</sub> Nanorods. Journal of Physical Chemistry C, 2009, 113, 13899-13905.                                                                                                          | 3.1  | 93        |
| 2  | A novel copper-bridged graphitic carbon nitride/porphyrin nanocomposite with dramatically<br>enhanced photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2020, 268, 118434.                                                         | 20.2 | 71        |
| 3  | A highly active nano-micro hybrid derived from Cu-bridged TiO2/porphyrin for enhanced photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2019, 243, 1-9.                                                                            | 20.2 | 64        |
| 4  | Fabrication of an efficient noble metal-free TiO2-based photocatalytic system using Cu–Ni bimetallic<br>deposit as an active center of H2 evolution from water. Solar Energy Materials and Solar Cells, 2015,<br>134, 309-317.                           | 6.2  | 60        |
| 5  | Highly efficient graphene oxide/porphyrin photocatalysts for hydrogen evolution and the interfacial electron transfer. Applied Catalysis B: Environmental, 2016, 187, 67-74.                                                                             | 20.2 | 53        |
| 6  | An Efficient Noble-Metal-Free Photocatalyst for Visible-Light-Driven H <sub>2</sub> Evolution:<br>Cu/Ni-Codoped Cd <sub>0.5</sub> Zn <sub>0.5</sub> S Nanoplates. ACS Sustainable Chemistry and<br>Engineering, 2017, 5, 1165-1172.                      | 6.7  | 46        |
| 7  | TiO2 nanoparticles incorporated with CuInS2 clusters: preparation and photocatalytic activity for degradation of 4-nitrophenol. Journal of Solid State Chemistry, 2009, 182, 2972-2976.                                                                  | 2.9  | 43        |
| 8  | TiO 2 nanosheets loaded with Cu: A low-cost efficient photocatalytic system for hydrogen evolution from water. International Journal of Hydrogen Energy, 2014, 39, 15403-15410.                                                                          | 7.1  | 43        |
| 9  | Assembly mechanism and photoproduced electron transfer for a novel cubic<br>Cu2O/tetrakis(4-hydroxyphenyl)porphyrin hybrid with visible photocatalytic activity for hydrogen<br>evolution. Applied Catalysis B: Environmental, 2017, 211, 296-304.       | 20.2 | 37        |
| 10 | Facile assembly of silica gel/reduced graphene oxide/Ag nanoparticle composite with a core–shell structure and its excellent catalytic properties. Journal of Materials Chemistry A, 2014, 2, 2952.                                                      | 10.3 | 34        |
| 11 | Composite photocatalyst containing Eosin Y and multiwalled carbon nanotubes loaded with CuO/NiO:<br>Mixed metal oxide as an active center of H2 evolution from water. Applied Surface Science, 2012, 258,<br>6029-6033.                                  | 6.1  | 32        |
| 12 | Dramatic enhancement of the photocatalytic activity of Cd <sub>0.5</sub> Zn <sub>0.5</sub> S<br>nanosheets via phosphorization calcination for visible-light-driven H <sub>2</sub> evolution. Journal<br>of Materials Chemistry A, 2017, 5, 14682-14688. | 10.3 | 32        |
| 13 | Fabrication mechanism and photocatalytic activity for a novel graphene oxide hybrid functionalized<br>with tetrakis-(4-hydroxylphenyl)porphyrin and 1-pyrenesulfonic acid. Applied Surface Science, 2018,<br>427, 15-23.                                 | 6.1  | 31        |
| 14 | The influence of combination mode on the structure and properties of porphyrin–graphene oxide composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 483, 45-52.                                                            | 4.7  | 30        |
| 15 | A facile preparation of multiwalled carbon nanotubes modified with hydroxyl groups and their high<br>dispersibility in ethanol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384,<br>363-367.                                 | 4.7  | 27        |
| 16 | Differences between Zn-porphyrin-coupled titanate nanotubes with various anchoring modes:<br>Thermostability, spectroscopic, photocatalytic and photoelectronic properties. Applied Surface<br>Science, 2011, 257, 5950-5956.                            | 6.1  | 27        |
| 17 | Titanate nanotubes co-sensitized with cadmium sulfide nanoparticles and porphyrin zinc: Preparation and enhanced photocatalytic activity under visible light. Catalysis Communications, 2012, 17, 136-139.                                               | 3.3  | 27        |
| 18 | A facile preparation of crystalline GeS2 nanoplates and their photocatalytic activity. Journal of<br>Alloys and Compounds, 2015, 631, 21-25.                                                                                                             | 5.5  | 27        |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Low temperature biomimetic synthesis of the Li2ZrO3 nanoparticles containing Li6Zr2O7 and high temperature CO2 capture. Materials Letters, 2010, 64, 1404-1406.                                                                                             | 2.6 | 26        |
| 20 | Preparation of high quality Ag film from Ag nanoparticles. Applied Surface Science, 2007, 253, 4677-4679.                                                                                                                                                   | 6.1 | 25        |
| 21 | Electrochemical behavior of eugenol on TiO <sub>2</sub> nanotubes improved with Cu <sub>2</sub> O clusters. RSC Advances, 2014, 4, 538-543.                                                                                                                 | 3.6 | 25        |
| 22 | Cu nanoclusters incorporated mesoporous TiO2 nanoparticles: An efficient and stable noble<br>metal-free photocatalyst for light driven H2 generation. International Journal of Hydrogen Energy,<br>2021, 46, 6461-6473.                                     | 7.1 | 24        |
| 23 | Enhanced electron transfer and photocatalytic hydrogen production over the carbon<br>nitride/porphyrin nanohybrid finely bridged by special copper. Catalysis Science and Technology, 2020,<br>10, 1640-1649.                                               | 4.1 | 23        |
| 24 | CoO/CoP composite hollow polyhedron: A superior catalyst with dramatic efficiency and stability for the room temperature reduction of 4-nitrophenol. Applied Surface Science, 2018, 434, 967-974.                                                           | 6.1 | 22        |
| 25 | Preparation of l-alanine ethyl ester modified multiwalled carbon nanotubes and their chiral<br>discrimination between d- and l-tryptophan. Diamond and Related Materials, 2010, 19, 1221-1224.                                                              | 3.9 | 21        |
| 26 | Preparation of per-hydroxylated pillar[5]arene decorated graphene and its electrochemical behavior.<br>Electrochimica Acta, 2016, 210, 720-728.                                                                                                             | 5.2 | 21        |
| 27 | An efficient photocatalytic system containing Eosin Y, 3D mesoporous graphene assembly and CuO for<br>visible-light-driven H2 evolution from water. International Journal of Hydrogen Energy, 2017, 42,<br>15540-15550.                                     | 7.1 | 21        |
| 28 | Graphene quantum dots supported by graphene oxide as a sensitive fluorescence nanosensor for cytochrome c detection and intracellular imaging. Journal of Materials Chemistry B, 2017, 5, 6300-6306.                                                        | 5.8 | 20        |
| 29 | Ag nanoparticles decorated mesh-like MoS2 hierarchical nanostructure fabricated on Ti foil: A highly sensitive SERS substrate for detection of trace malachite green in flowing water. Applied Surface Science, 2020, 509, 145331.                          | 6.1 | 20        |
| 30 | High sensitivity to Cu2+ions of electrodes coated with ethylenediamine-modified multi-walled carbon nanotubes. Nanotechnology, 2006, 17, 4825-4829.                                                                                                         | 2.6 | 19        |
| 31 | Synergetic effect of Cu–Pt bimetallic cocatalyst on SrTiO <sub>3</sub> for efficient photocatalytic hydrogen production from water. RSC Advances, 2015, 5, 102593-102598.                                                                                   | 3.6 | 19        |
| 32 | Remarkable enhancement of the photocatalytic activity of ZnO nanorod array by utilizing energy<br>transfer between Eosin Y and Rose Bengal for visible light-driven hydrogen evolution. International<br>Journal of Hydrogen Energy, 2018, 43, 15255-15261. | 7.1 | 19        |
| 33 | Solvothermal synthesis of SnO2 nanoparticles via oxidation of Sn2+ ions at the water–oil interface.<br>Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 298, 280-283.                                                                | 4.7 | 18        |
| 34 | An Ultrasensitive, Disposable, and "Plug and Play―Surface-Enhanced Raman Scattering Substrate for<br>the In Situ Detection of Trace Thiram in Water. ACS Applied Nano Materials, 2018, 1, 4955-4963.                                                        | 5.0 | 18        |
| 35 | Ti mesh loaded with Ag "nanobosk― A highly sensitive Raman sensing platform for trace norfloxacin<br>in water. Sensors and Actuators B: Chemical, 2019, 283, 163-171.                                                                                       | 7.8 | 18        |
| 36 | The study of a novel cobalt-implanted pyridylporphyrin/graphene oxide nanohybrid for enhanced photocatalytic hydrogen evolution and its electron transfer mechanism. Nanoscale, 2018, 10, 18635-18641.                                                      | 5.6 | 17        |

| #  | Article                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A stable and plug-and-play aluminium/titanium dioxide/metal-organic framework/silver composite<br>sheet for sensitive Raman detection and photocatalytic removal of 4-aminothiophenol. Chemosphere,<br>2021, 282, 131000.                                                | 8.2  | 17        |
| 38 | Facile preparation of Ti <sup>3+</sup> self-doped TiO <sub>2</sub> nanoparticles and their dramatic visible photocatalytic activity for the fast treatment of highly concentrated Cr( <scp>vi</scp> ) effluent. Catalysis Science and Technology, 2019, 9, 2523-2531.    | 4.1  | 16        |
| 39 | AgGaS2 nanoplates loaded with CuS: An efficient visible photocatalyst for rapid H2 evolution.<br>International Journal of Hydrogen Energy, 2015, 40, 4119-4128.                                                                                                          | 7.1  | 15        |
| 40 | Multi-layered mesh-like MoS2 hierarchical nanostructure fabricated on Ti foil: An efficient noble metal-free photocatalyst for visible-light-driven H2 evolution from water. Catalysis Communications, 2016, 82, 7-10.                                                   | 3.3  | 15        |
| 41 | Noble-Metal-Free Copper Nanoparticles/Reduced Graphene Oxide Composite: A New and Highly Efficient<br>Catalyst for Transformation of 4-Nitrophenol. Catalysis Letters, 2017, 147, 1315-1321.                                                                             | 2.6  | 15        |
| 42 | A novel pathway toward efficient and stable C3N4-based photocatalyst for light driven H2 evolution:<br>The synergistic effect between Pt and CoWO4. International Journal of Hydrogen Energy, 2019, 44,<br>28113-28122.                                                  | 7.1  | 15        |
| 43 | Novel and Highly Active Potassium Niobate-Based Photocatalyst for Dramatically Enhanced Hydrogen<br>Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 8591-8598.                                                                                           | 6.7  | 14        |
| 44 | Facile Preparation of Ag2ZnGeO4 Flower-like Hierarchical Nanostructure and Its Photocatalytic Activity. Journal of Materials Science and Technology, 2017, 33, 47-51.                                                                                                    | 10.7 | 13        |
| 45 | CuWO4-x nanoparticles incorporated brookite TiO2 porous nanospheres: Preparation and dramatic photocatalytic activity for light driven H2 generation. Materials Research Bulletin, 2021, 136, 111171.                                                                    | 5.2  | 13        |
| 46 | An efficient photocatalyst used in a continuous flow system for hydrogen evolution from water:<br>TiO <sub>2</sub> nanotube arrays fabricated on Ti meshes. RSC Advances, 2015, 5, 6954-6961.                                                                            | 3.6  | 12        |
| 47 | Graphene/Pyridylporphyrin Hybrids Interfacially Linked with Rare Earth Ions for Enhanced<br>Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 8358-8366.                                                                            | 6.7  | 12        |
| 48 | Modifications of morphology and hydrogen evolution activity for the potassium niobate nanoscrolls<br>by introducing reduced graphene oxide. International Journal of Hydrogen Energy, 2015, 40,<br>14297-14304.                                                          | 7.1  | 11        |
| 49 | Cubic Cuprous Oxide-Based Nanocomposites for Photocatalytic Hydrogen Generation. ACS Applied Nano Materials, 2019, 2, 7409-7420.                                                                                                                                         | 5.0  | 11        |
| 50 | C3N4 nanosheets loaded with the CuWO4 activated NiS co-catalyst: A stable noble metal-free photocatalyst with dramatic photocatalytic activity for H2 generation and high salinity tolerant. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 405, 112919. | 3.9  | 11        |
| 51 | Electrodes modified with multiwalled carbon nanotubes carrying Fe3O4 beads: High sensitivity to H2O2. Solid State Sciences, 2011, 13, 142-145.                                                                                                                           | 3.2  | 9         |
| 52 | Fabrication of antennae-like nanoheterostructure attached by porphyrin for increased photocatalytic<br>hydrogen generation and electron transfer mechanism. International Journal of Hydrogen Energy,<br>2020, 45, 6508-6518.                                            | 7.1  | 9         |
| 53 | A novel three-dimensional pyridine-pillared graphene assembly for enhanced electron transfer and photocatalytic hydrogen evolution. Catalysis Science and Technology, 2018, 8, 2818-2824.                                                                                | 4.1  | 7         |
| 54 | Photocatalytic activity and the electron transport mechanism of titanium dioxide<br>microsphere/porphyrin implanted with small size copper. Physical Chemistry Chemical Physics, 2020,<br>22, 13528-13535.                                                               | 2.8  | 7         |

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Aluminum sheet induced flower-like carbon nitride anchored with silver nanowires for highly efficient SERS detection of trace malachite green. Environmental Research, 2022, 204, 112289.                                                                | 7.5 | 7         |
| 56 | Rapid and efficient photocatalytic reduction of hexavalent chromium by using "water dispersible―<br>TiO2 nanoparticles. Materials Chemistry and Physics, 2016, 178, 190-195.                                                                             | 4.0 | 6         |
| 57 | A novel AuNPs-based nanosensors for smart detection of NO with low concentration. Talanta, 2019, 191, 457-460.                                                                                                                                           | 5.5 | 6         |
| 58 | Preparation and surface enhanced Raman scattering behavior of Ag-coated C60 nanoclusters. Applied<br>Surface Science, 2013, 286, 275-279.                                                                                                                | 6.1 | 5         |
| 59 | Synergistic effect between eosin Y and rhodamine B on a photoelectrode coated with Pt nanoparticle-decorated graphene. RSC Advances, 2015, 5, 105969-105979.                                                                                             | 3.6 | 5         |
| 60 | The strong dependence of the bi-functionalities of core–shell-like gold-based nanocomposites on the size of gold nanoparticles. Journal of Materials Chemistry C, 2017, 5, 11411-11415.                                                                  | 5.5 | 5         |
| 61 | A novel cobalt ion implanted pyridylporphyrin/graphene oxide assembly for enhanced photocatalytic hydrogen production. Journal of Porphyrins and Phthalocyanines, 2018, 22, 877-885.                                                                     | 0.8 | 5         |
| 62 | Preparation of an Ni5P4/Ni porous composite using a Ni foam as the skeleton and its application in the treatment of large-volume effluent with a high concentration of 4-nitrophenol at room temperature. New Journal of Chemistry, 2019, 43, 9673-9679. | 2.8 | 5         |
| 63 | Two dimensional porphyrin-based metal–organic framework constructed on K4Nb6O17 microflowers<br>for highly efficient charge transfer and photocatalytic hydrogen generation. Applied Surface Science,<br>2022, 599, 153922.                              | 6.1 | 5         |
| 64 | Facile assembly of a polystyrene microsphere/graphene oxide/porphyrin composite with core–shell structure. RSC Advances, 2014, 4, 37854-37858.                                                                                                           | 3.6 | 4         |
| 65 | The assembly and photoelectronic property of reduced graphene oxide/porphyrin/phthalocyanine composite films. RSC Advances, 2015, 5, 42063-42068.                                                                                                        | 3.6 | 4         |
| 66 | Dramatically enhanced photocatalytic hydrogen production over pompoms-like cadmium molybdate<br>nano-micro hybrids modulated by copper ions. International Journal of Hydrogen Energy, 2019, 44,<br>8273-8278.                                           | 7.1 | 4         |
| 67 | Facile assembly and improved photocatalytic activity of a special cuprous oxide/copper fluoride heterojunction induced by graphene oxide. Materials Advances, 2021, 2, 2000-2008.                                                                        | 5.4 | 4         |
| 68 | Boosting charge separation and nitrogen vacancies in graphitic carbon nitride by implanted strontium<br>vanadate for highly efficient photocatalytic reduction of hexavalent chromium. RSC Advances, 2021,<br>11, 16034-16039.                           | 3.6 | 4         |
| 69 | Facile construction of carbon nitride/cobalt ion/eosin Y nanohybrids for enhanced interaction and photocatalytic hydrogen production. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126123.                               | 4.7 | 4         |
| 70 | Aluminum sheet-induced porous zinc oxide nanosheets decorated with silver nanoparticles for ultrasensitive SERS sensing of crystal violet. Materials Advances, 2022, 3, 2583-2590.                                                                       | 5.4 | 4         |
| 71 | Preparation of waterâ€dispersible TiO 2 nanoparticles. Micro and Nano Letters, 2014, 9, 940-943.                                                                                                                                                         | 1.3 | 3         |
| 72 | Redox heme-proteins mediated fluorescence of CdSe/ZnS quantum dots. Journal of Photochemistry and Photobiology B: Biology, 2014, 133, 65-72.                                                                                                             | 3.8 | 3         |

| #  | Article                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Self-directedly assembled porphyrin thin films with high photoactivity. RSC Advances, 2015, 5, 94046-94052.                                                                                                                                                                       | 3.6 | 3         |
| 74 | Facile Preparation of Fe <sub>3</sub> O <sub>4</sub> /Carbon Nanocomposite With High Lithium<br>Storage Capacity. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry,<br>2016, 46, 647-652.                                                           | 0.6 | 3         |
| 75 | Preparation of 4,4-bipyridine covalently-linked graphene monolith and its photocatalytic behavior in light-driven H2 evolution from water. Catalysis Communications, 2017, 97, 151-154.                                                                                           | 3.3 | 3         |
| 76 | A renewable photocatalytic system with dramatic photocatalytic activity for H <sub>2</sub><br>evolution and constant light energy utilization: eosin Y sensitized ZnWO <sub>4</sub> nanoplates<br>loaded with CuO nanoparticles. New Journal of Chemistry, 2021, 45, 17266-17277. | 2.8 | 3         |
| 77 | Eosin Y Sensitized ZnO "Nanograss―for Visible-Light-Driven H2 Evolution from Water. Catalysis<br>Letters, 2015, 145, 1307-1311.                                                                                                                                                   | 2.6 | 2         |
| 78 | Dramatically Enhanced Photocatalytic Activity of TiO2 Composite Microspheres by Loading Special<br>Copper Nanocrystalline. Catalysis Letters, 2020, 150, 1368-1372.                                                                                                               | 2.6 | 2         |
| 79 | Preparation of worm-like SnS2 nanoparticles and their photocatalytic activity. Journal of<br>Experimental Nanoscience, 2020, 15, 100-108.                                                                                                                                         | 2.4 | 2         |
| 80 | Hydroxylporphyrin/NiO nanosheet nanocomposite with strong interfacial interaction for highly efficient hydrogen generation. Journal of Solid State Chemistry, 2021, 298, 122103.                                                                                                  | 2.9 | 2         |
| 81 | An efficient catalyst for rapid restoration of highly concentrated 4-nitrophenol effluent at room<br>temperature: ZnWO4 nanoplates loaded with CuO nanoparticles. Journal of Physics and Chemistry of<br>Solids, 2022, 163, 110595.                                               | 4.0 | 2         |
| 82 | Nickel( <scp>ii</scp> )-ethylenediamine tetraacetic acid sensitized silicon nanowire array: an efficient<br>cocatalyst-free photocatalyst for photocatalytic hydrogen generation under simulated sunlight<br>irradiation. RSC Advances, 2015, 5, 65660-65667.                     | 3.6 | 1         |
| 83 | An Efficient Catalyst for Restoration of Large Volume Effluent Containing 4-Nitrophenol at Room<br>Temperature. Nano, 2018, 13, 1850101.                                                                                                                                          | 1.0 | 1         |
| 84 | Boosting the photocatalytic H2 production performance and stability of C3N4 nanosheets via the synergistic effect between SnO2 nanoparticles and Pt nanoclusters. Inorganic Chemistry Communication, 2021, 133, 108976.                                                           | 3.9 | 1         |
| 85 | Facile fabrication of a novel pyridinelyethyne/titanium dioxide nanotube hybrid with high photoelectronic performance. Materials Letters, 2018, 231, 98-100.                                                                                                                      | 2.6 | 0         |
| 86 | Ti mesh loaded with multibranched Ag "bushes― Preparation and high sensitivity to 5-nitroguaiacol.<br>Materials Letters, 2020, 276, 128201.                                                                                                                                       | 2.6 | 0         |