
Alban Ordureau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4753240/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brain-derived autophagosome profiling reveals the engulfment of nucleoid-enriched mitochondrial fragments by basal autophagy in neurons. Neuron, 2022, 110, 967-976.e8.	3.8	43
2	Functional conservation and divergence of the helixâ€ŧurnâ€helix motif of E2 ubiquitinâ€conjugating enzymes. EMBO Journal, 2022, 41, e108823.	3.5	8
3	RIPK1 Promotes Energy Sensing by the mTORC1 Pathway. Molecular Cell, 2021, 81, 370-385.e7.	4.5	25
4	Super Heavy TMTpro Labeling Reagent: An Alternative and Higher-Charge-State-Amenable Stable-Isotope-Labeled TMTpro Variant. Journal of Proteome Research, 2021, 20, 3009-3013.	1.8	1
5	Temporal proteomics during neurogenesis reveals large-scale proteome and organelle remodeling via selective autophagy. Molecular Cell, 2021, 81, 5082-5098.e11.	4.5	52
6	Global ubiquitylation analysis of mitochondria in primary neurons identifies endogenous Parkin targets following activation of PINK1. Science Advances, 2021, 7, eabj0722.	4.7	29
7	Pathogenic Pathways in Early-Onset Autosomal Recessive Parkinson's Disease Discovered Using Isogenic Human Dopaminergic Neurons. Stem Cell Reports, 2020, 14, 75-90.	2.3	37
8	The endoplasmic reticulum P5A-ATPase is a transmembrane helix dislocase. Science, 2020, 369, .	6.0	104
9	Ubiquitin chain-elongating enzyme UBE2S activates the RING E3 ligase APC/C for substrate priming. Nature Structural and Molecular Biology, 2020, 27, 550-560.	3.6	26
10	Global Landscape and Dynamics of Parkin and USP30-Dependent Ubiquitylomes in iNeurons during Mitophagic Signaling. Molecular Cell, 2020, 77, 1124-1142.e10.	4.5	143
11	Systematic quantitative analysis of ribosome inventory during nutrient stress. Nature, 2020, 583, 303-309.	13.7	78
12	EDF1 coordinates cellular responses to ribosome collisions. ELife, 2020, 9, .	2.8	96
13	The PINK1 kinase-driven ubiquitin ligase Parkin promotes mitochondrial protein import through the presequence pathway in living cells. Scientific Reports, 2019, 9, 11829.	1.6	48
14	Acute unfolding of a single protein immediately stimulates recruitment of ubiquitin protein ligase E3C (UBE3C) to 26S proteasomes. Journal of Biological Chemistry, 2019, 294, 16511-16524.	1.6	13
15	TAM Kinases Promote Necroptosis by Regulating Oligomerization of MLKL. Molecular Cell, 2019, 75, 457-468.e4.	4.5	87
16	TEX264 Is an Endoplasmic Reticulum-Resident ATG8-Interacting Protein Critical for ER Remodeling during Nutrient Stress. Molecular Cell, 2019, 74, 891-908.e10.	4.5	193
17	Dynamics of PARKIN-Dependent Mitochondrial Ubiquitylation in Induced Neurons and Model Systems Revealed by Digital Snapshot Proteomics. Molecular Cell, 2018, 70, 211-227.e8.	4.5	145
18	Building and decoding ubiquitin chains for mitophagy. Nature Reviews Molecular Cell Biology, 2018, 19, 93-108.	16.1	458

Alban Ordureau

#	Article	IF	CITATIONS
19	RAB7A phosphorylation by TBK1 promotes mitophagy via the PINK-PARKIN pathway. Science Advances, 2018, 4, eaav0443.	4.7	128
20	G1 cyclins link proliferation, pluripotency and differentiation of embryonic stem cells. Nature Cell Biology, 2017, 19, 177-188.	4.6	107
21	TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature, 2017, 545, 365-369.	13.7	136
22	Quantitative Phospho-proteomic Analysis of TNFα/NFκB Signaling Reveals a Role for RIPK1 Phosphorylation in Suppressing Necrotic Cell Death. Molecular and Cellular Proteomics, 2017, 16, 1200-1216.	2.5	18
23	Highly Multiplexed Quantitative Mass Spectrometry Analysis of Ubiquitylomes. Cell Systems, 2016, 3, 395-403.e4.	2.9	153
24	Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C. Cell, 2016, 165, 1440-1453.	13.5	126
25	System-Wide Modulation of HECT E3 Ligases with Selective Ubiquitin Variant Probes. Molecular Cell, 2016, 62, 121-136.	4.5	142
26	Quantifying Ubiquitin Signaling. Molecular Cell, 2015, 58, 660-676.	4.5	124
27	Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science, 2015, 347, 1436-1441.	6.0	823
28	Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress. Neuron, 2015, 87, 371-381.	3.8	277
29	The BioPlex Network: A Systematic Exploration of the Human Interactome. Cell, 2015, 162, 425-440.	13.5	1,241
30	Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6637-6642.	3.3	240
31	The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. Molecular Cell, 2015, 60, 7-20.	4.5	658
32	Quantitative Proteomics Reveal a Feedforward Model for Mitochondrial PARKIN Translocation and Ubiquitin Chain Synthesis. Molecular Cell, 2014, 56, 462.	4.5	6
33	Cyclin C is a haploinsufficient tumour suppressor. Nature Cell Biology, 2014, 16, 1080-1091.	4.6	124
34	Balancing act. Nature, 2014, 510, 347-348.	13.7	6
35	Quantitative Proteomics Reveal a Feedforward Mechanism for Mitochondrial PARKIN Translocation and Ubiquitin Chain Synthesis. Molecular Cell, 2014, 56, 360-375.	4.5	550
36	Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15247-15252.	3.3	373

Alban Ordureau

#	Article	IF	CITATIONS
37	DEAF1 Is a Pellino1-interacting Protein Required for Interferon Production by Sendai Virus and Double-stranded RNA*. Journal of Biological Chemistry, 2013, 288, 24569-24580.	1.6	28
38	Pellino1 Is Required for Interferon Production by Viral Double-stranded RNA*. Journal of Biological Chemistry, 2012, 287, 34825-34835.	1.6	33
39	Polyubiquitin Binding to Optineurin Is Required for Optimal Activation of TANK-binding Kinase 1 and Production of Interferon β. Journal of Biological Chemistry, 2011, 286, 35663-35674.	1.6	152
40	Polyubiquitin binding to ABIN1 is required to prevent autoimmunity. Journal of Experimental Medicine, 2011, 208, 1215-1228.	4.2	146
41	14-3-3 binding to LRRK2 is disrupted by multiple Parkinson's disease-associated mutations and regulates cytoplasmic localization. Biochemical Journal, 2010, 430, 393-404.	1.7	355
42	The IRAK-catalysed activation of the E3 ligase function of Pellino isoforms induces the Lys63-linked polyubiquitination of IRAK1. Biochemical Journal, 2008, 409, 43-52.	1.7	149