
## Yen-Sian Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4753209/publications.pdf Version: 2024-02-01



VEN-SIAN LEE

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Signal enhancement of FBG-based cantilever accelerometer by resonance suppression using magnetic damper. Sensors and Actuators A: Physical, 2020, 304, 111895.                                    | 4.1 | 31        |
| 2  | Thermal characterization of phase difference among the LP modes in two-mode fibers based on numerical approach. Optik, 2020, 207, 164289.                                                         | 2.9 | 1         |
| 3  | In-fiber Fabry Perot interferometer with narrow interference fringes for enhanced sensitivity in elastic wave detection. Optical Fiber Technology, 2019, 53, 102021.                              | 2.7 | 8         |
| 4  | Influence of Internal Stresses in Few-Mode Fiber on the Thermal Characteristics of Regenerated Gratings. Photonic Sensors, 2019, 9, 162-169.                                                      | 5.0 | 0         |
| 5  | Digital Matched Filtering (DMF) Technique for the Performance Enhancement of Few-Mode Fiber Bragg<br>Grating Sensor. IEEE Sensors Journal, 2019, 19, 5653-5659.                                   | 4.7 | 1         |
| 6  | Pseudohigh-Resolution Spectral Interrogation Scheme for Small Signals From FBG Sensors. IEEE<br>Transactions on Instrumentation and Measurement, 2019, 68, 2964-2970.                             | 4.7 | 10        |
| 7  | Mode Splitting Based on Polarization Manipulation in Few-Mode Fiber. IEEE Journal of Quantum<br>Electronics, 2018, 54, 1-6.                                                                       | 1.9 | 5         |
| 8  | Enhanced Optical Delay Line in Few-Mode Fiber Based on Mode Conversion Using Few-Mode Fiber Bragg<br>Gratings. IEEE Journal of Quantum Electronics, 2018, 54, 1-7.                                | 1.9 | 3         |
| 9  | Dynamic LP01–LP11 Mode Conversion by a Tilted Binary Phase Plate. Journal of Lightwave Technology,<br>2017, 35, 3597-3603.                                                                        | 4.6 | 17        |
| 10 | LP11–LP01Mode Conversion Based on an Angled-Facet Two-Mode Fiber. IEEE Photonics Technology<br>Letters, 2017, 29, 1007-1010.                                                                      | 2.5 | 4         |
| 11 | CO <sub>2</sub> Laser Applications in Optical Fiber Components Fabrication and Treatment: A Review.<br>IEEE Sensors Journal, 2017, 17, 2961-2974.                                                 | 4.7 | 12        |
| 12 | Curvature and Temperature Measurement Based on a Few-Mode PCF Formed M-Z-I and an Embedded FBG.<br>Sensors, 2017, 17, 1725.                                                                       | 3.8 | 18        |
| 13 | Axial stress profiling for few-mode fiber Bragg grating based on resonant wavelength shifts during etching process. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1894. | 2.1 | 6         |
| 14 | Fabrication and characterization of laser-ablated cladding resonances of two different-diameter photosensitive optical fibers. Sensors and Actuators A: Physical, 2016, 243, 111-116.             | 4.1 | 4         |
| 15 | LP <sub>01</sub> –LP <sub>11</sub> Cross-Mode Interference in a Chirped Grating Inscribed in Two-Mode<br>Fiber. IEEE Journal of Quantum Electronics, 2016, 52, 1-6.                               | 1.9 | 3         |
| 16 | Thermal activation of regenerated fiber Bragg grating in few mode fibers. Optical Fiber Technology, 2016, 28, 7-10.                                                                               | 2.7 | 2         |
| 17 | Femtosecond and nanosecond pulsed laser deposition of silicon and germanium. Applied Surface<br>Science, 2015, 354, 206-211.                                                                      | 6.1 | 10        |
| 18 | The growth of nanostructured Cu2ZnSnS4 films by pulsed laser deposition. Applied Surface Science, 2015, 354, 42-47.                                                                               | 6.1 | 12        |

YEN-SIAN LEE

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Pulsed laser deposition of Al-doped ZnO films on glass and polycarbonate. Journal of Nanophotonics, 2014, 8, 084091.                                                                | 1.0 | 17        |
| 20 | Understanding the mechanism of nanoparticle formation in wire explosion process. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 117, 1-6.                       | 2.3 | 29        |
| 21 | Effect of ambient air pressure on synthesis of copper and copper oxide nanoparticles by wire explosion process. Current Applied Physics, 2012, 12, 199-203.                         | 2.4 | 42        |
| 22 | Effect of ambient gas species on the formation of Cu nanoparticles in wire explosion process. Current<br>Applied Physics, 2012, 12, 1345-1348.                                      | 2.4 | 23        |
| 23 | Impact of binary gas on nanoparticle formation in wire explosion process: An understanding via arc plasma formation. Materials Letters, 2012, 81, 45-47.                            | 2.6 | 4         |
| 24 | Investigation on effect of ambient pressure in wire explosion process for synthesis of copper nanoparticles by optical emission spectroscopy. Powder Technology, 2012, 222, 95-100. | 4.2 | 15        |