Hisashi Harada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/475257/publications.pdf

Version: 2024-02-01

87 papers

17,538 citations

43 h-index 91828 69 g-index

87 all docs

87 docs citations

87 times ranked

20448 citing authors

#	Article	IF	CITATIONS
1	Senolytic-Mediated Elimination of Head and Neck Tumor Cells Induced Into Senescence by Cisplatin. Molecular Pharmacology, 2022, 101, 168-180.	1.0	13
2	Unmasking BCL-2 Addiction in Synovial Sarcoma by Overcoming Low NOXA. Cancers, 2021, 13, 2310.	1.7	6
3	Targeting Stress-Response Pathways and Therapeutic Resistance in Head and Neck Cancer. Frontiers in Oral Health, 2021, 2, 676643.	1.2	7
4	FOSL1 promotes metastasis of head and neck squamous cell carcinoma through super-enhancer-driven transcription program. Molecular Therapy, 2021, 29, 2583-2600.	3.7	39
5	Androgen-deprivation induced senescence in prostate cancer cells is permissive for the development of castration-resistance but susceptible to senolytic therapy. Biochemical Pharmacology, 2021, 193, 114765.	2.0	20
6	Clearance of therapyâ€induced senescent tumor cells by the senolytic ABTâ€263 via interference with BCLâ€X _L â€"BAX interaction. Molecular Oncology, 2020, 14, 2504-2519.	2.1	90
7	Combination of fenretinide and ABT-263 induces apoptosis through NOXA for head and neck squamous cell carcinoma treatment. PLoS ONE, 2019, 14, e0219398.	1.1	17
8	Tumor cell escape from therapy-induced senescence. Biochemical Pharmacology, 2019, 162, 202-212.	2.0	105
9	Abstract 901: Elimination of senescent tumor cells by ABT263 interferes with proliferative recovery and provides a two-hit therapeutic approach., 2019,,.		0
10	Coamplification of <i>miR-4728</i> protects <i>HER2</i> -amplified breast cancers from targeted therapy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2594-E2603.	3.3	23
11	p53â€independent Noxa induction by cisplatin is regulated by ATF3/ATF4 in head and neck squamous cell carcinoma cells. Molecular Oncology, 2018, 12, 788-798.	2.1	52
12	Venetoclax Is Effective in Small-Cell Lung Cancers with High BCL-2 Expression. Clinical Cancer Research, 2018, 24, 360-369.	3.2	96
13	Increased Synthesis of MCL-1 Protein Underlies Initial Survival of <i>EGFR</i> Hotant Lung Cancer to EGFR Inhibitors and Provides a Novel Drug Target. Clinical Cancer Research, 2018, 24, 5658-5672.	3.2	38
14	Sensitivity and Resistance to BH3 Mimetics in Cancer Therapy. Resistance To Targeted Anti-cancer Therapeutics, 2018, , 147-180.	0.1	0
15	Abstract B31: A protein synthesis switch underlies initial survival of EGFR-mutant lung cancer to EGFR inhibitors. , 2018, , .		0
16	Abstract 3082: Deficient NOXA in HER2-amplified breast cancer drives kinase inhibitor resistance. , 2017,		1
17	Abstract 2127: p53-independent Noxa induction by cisplatin is regulated by ATF3/ATF4 in HNSCC cells. , 2017, , .		0
18	Exploitation of the Apoptosis-Primed State of MYCN-Amplified Neuroblastoma to Develop a Potent and Specific Targeted Therapy Combination. Cancer Cell, 2016, 29, 159-172.	7.7	104

#	Article	IF	Citations
19	Combination with vorinostat overcomes ABT-263 (navitoclax) resistance of small cell lung cancer. Cancer Biology and Therapy, 2016, 17, 27-35.	1.5	33
20	DNA damaging agent-induced apoptosis is regulated by MCL-1 phosphorylation and degradation mediated by the Noxa/MCL-1/CDK2 complex. Oncotarget, 2016, 7, 36353-36365.	0.8	23
21	Abstract 2981: DNA damaging agent-induced apoptosis is controled by MCL-1 phosphorylation and degradation mediated by the Noxa/MCL-1/CDK2 complex. , 2016, , .		O
22	Assessment of ABT-263 activity across a cancer cell line collection leads to a potent combination therapy for small-cell lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1288-96.	3.3	110
23	Yet Another Function of p53—The Switch That Determines Whether Radiation-Induced Autophagy Will Be Cytoprotective or Nonprotective: Implications for Autophagy Inhibition as a Therapeutic Strategy. Molecular Pharmacology, 2015, 87, 803-814.	1.0	43
24	Abstract 1013: Understanding the molecular pathways underlying radio-sensitization of non-small cell lung cancer (NSCLC) by vitamin D (EB1089). , 2015, , .		0
25	Abstract 998: Induction of non-protective autophagy by radiation in tumor cells: Implications for autophagy inhibition as a therapeutic strategy. , $2015, \dots$		0
26	Abstract 1657: The role of Noxa/MCL-1 axis in solid tumors treated with DNA damaging agents. , 2015, , .		0
27	Abstract 2524: Combination with vorinostat overcomes ABT-263 resistance of small cell lung cancer. , 2015, , .		0
28	A novel cytostatic form of autophagy in sensitization of non-small cell lung cancer cells to radiation by vitamin D and the vitamin D analog, EB 1089. Autophagy, 2014, 10, 2346-2361.	4.3	79
29	Noxa determines localization and stability of MCL-1 and consequently ABT-737 sensitivity in small cell lung cancer. Cell Death and Disease, 2014, 5, e1052-e1052.	2.7	63
30	Abstract A23: Noxa determines localization and stability of MCL-1 and consequently ABT-737 sensitivity in small cell lung cancer Clinical Cancer Research, 2014, 20, A23-A23.	3.2	1
31	Paclitaxel-Induced Apoptosis Is BAK-Dependent, but BAX and BIM-Independent in Breast Tumor. PLoS ONE, 2013, 8, e60685.	1.1	38
32	Abstract 5579: Paclitaxel-induced apoptosis is BAK-dependent, but BAX and BIM-independent in breast tumor , 2013, , .		0
33	Glucocorticoid-mediated BIM induction and apoptosis are regulated by Runx2 and c-Jun in leukemia cells. Cell Death and Disease, 2012, 3, e349-e349.	2.7	56
34	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
35	Targeting the Regulatory Machinery of BIM for Cancer Therapy. Critical Reviews in Eukaryotic Gene Expression, 2012, 22, 117-129.	0.4	21
36	Restoration of p53 Functions Protects Cells from Concanavalin A–Induced Apoptosis. Molecular Cancer Therapeutics, 2010, 9, 471-479.	1.9	16

#	Article	lF	CITATIONS
37	GX15-070 (obatoclax) overcomes glucocorticoid resistance in acute lymphoblastic leukemia through induction of apoptosis and autophagy. Cell Death and Disease, 2010, 1, e76-e76.	2.7	98
38	Interferon-beta treatment increases human papillomavirus early gene transcription and viral plasmid genome replication by activating interferon regulatory factor (IRF)-1. Carcinogenesis, 2009, 30, 1336-1344.	1.3	21
39	Erythropoietin-induced phosphorylation/degradation of BIM contributes to survival of erythroid cells. Experimental Hematology, 2009, 37, 151-158.	0.2	26
40	MEK inhibitors potentiate dexamethasone lethality in acute lymphoblastic leukemia cells through the pro-apoptotic molecule BIM. Leukemia, 2009, 23, 1744-1754.	3.3	50
41	The BH3-only protein Bim plays a critical role in leukemia cell death triggered by concomitant inhibition of the PI3K/Akt and MEK/ERK1/2 pathways. Blood, 2009, 114, 4507-4516.	0.6	77
42	The impact of genetic background and Bid on the phenotype of Bcl-2-deficiency in mice. Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 53-62.	2.2	6
43	17-Allylamino-17-demethoxygeldanamycin enhances the lethality of deoxycholic acid in primary rodent hepatocytes and established cell lines. Molecular Cancer Therapeutics, 2007, 6, 618-632.	1.9	38
44	Cyanidin-3-rutinoside, a Natural Polyphenol Antioxidant, Selectively Kills Leukemic Cells by Induction of Oxidative Stress. Journal of Biological Chemistry, 2007, 282, 13468-13476.	1.6	185
45	Mcl-1 Down-regulation Potentiates ABT-737 Lethality by Cooperatively Inducing Bak Activation and Bax Translocation. Cancer Research, 2007, 67, 782-791.	0.4	366
46	MEK1/2 inhibitors sensitize Bcr/Abl+ human leukemia cells to the dual Abl/Src inhibitor BMS-354/825. Blood, 2007, 109, 4006-4015.	0.6	55
47	MEK1/2 inhibitors potentiate UCN-01 lethality in human multiple myeloma cells through a Bim-dependent mechanism. Blood, 2007, 110, 2092-2101.	0.6	43
48	p38-MAP kinase activation followed by BIM induction is essential for glucocorticoid-induced apoptosis in lymphoblastic leukemia cells. FEBS Letters, 2006, 580, 3539-3544.	1.3	86
49	An Shp2/SFK/Ras/Erk Signaling Pathway Controls Trophoblast Stem Cell Survival. Developmental Cell, 2006, 10, 317-327.	3.1	222
50	TLR-dependent Bim phosphorylation in macrophages is mediated by ERK and is connected to proteasomal degradation of the protein. International Immunology, 2006, 18, 1749-1757.	1.8	14
51	OSU-03012 Promotes Caspase-Independent but PERK-, Cathepsin B-, BID-, and AIF-Dependent Killing of Transformed Cells. Molecular Pharmacology, 2006, 70, 589-603.	1.0	80
52	p38-MAP Kinase Activation Followed by BIM Induction Is Critical for Glucocorticoid-Induced Apoptosis in Lymphoblastic Leukemia Cells Blood, 2006, 108, 1382-1382.	0.6	0
53	Essential role of BAX,BAK in B cell homeostasis and prevention of autoimmune disease. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11272-11277.	3.3	181
54	Survival factor-induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15313-15317.	3.3	263

#	Article	IF	CITATIONS
55	Apoptosis regulators. Reviews in Clinical and Experimental Hematology, 2003, 7, 117-38.	0.1	38
56	A case of gastrointestinal lipomatosis coexistent with metastatic tumors. Progress of Digestive Endoscopy, 2002, 60, 54-55.	0.0	0
57	A case of benign esophageal stricture of unknown origin. Progress of Digestive Endoscopy, 2002, 61, 74-75.	0.0	0
58	A case of Juvenile polyposis localized in the stomach accompanied by anemia and hypoproteinemia. Progress of Digestive Endoscopy, 2001, 59, 52-55.	0.0	3
59	Phosphorylation and Inactivation of BAD by Mitochondria-Anchored Protein Kinase A. Molecular Cell, 1999, 3, 413-422.	4.5	593
60	Death and Survival Signals Determine Active/Inactive Conformations of Pro-apoptotic BAX, BAD, and BID Molecules. Cold Spring Harbor Symposia on Quantitative Biology, 1999, 64, 343-350.	2.0	55
61	Solution structure of the IRF-2 DNA-binding domain: a novel subgroup of the winged helix–turn–helix family. Structure, 1998, 6, 491-500.	1.6	23
62	The role of interferon regulatory factors in the interferon system and cell growth control. Biochimie, 1998, 80, 641-650.	1.3	124
63	Cell Cycle Regulation of Histone H4 Gene Transcription Requires the Oncogenic Factor IRF-2. Journal of Biological Chemistry, 1998, 273, 194-199.	1.6	78
64	Serine Phosphorylation of Death Agonist BAD in Response to Survival Factor Results in Binding to 14-3-3 Not BCL-XL. Cell, 1996, 87, 619-628.	13.5	2,444
65	Essential and nonâ€redundant roles of p48 (ISGF3γ) and IRFâ€1 in both type I and type II interferon responses, as revealed by gene targeting studies. Genes To Cells, 1996, 1, 115-124.	0.5	215
66	Regulation of IFNâ $\in \hat{i}_{\pm}/\hat{l}^2$ genes: evidence for a dual function of the transcription factor complex ISGF3 in the production and action of IFNâ $\in \hat{i}_{\pm}/\hat{l}^2$. Genes To Cells, 1996, 1, 995-1005.	0.5	88
67	Activation of a cell-cycle-regulated histone gene by the oncogenic transcription factor IRF-2. Nature, 1995, 377, 362-365.	13.7	179
68	Regulation of the interferon system and cell growth by the IRF transcription factors. Journal of Cancer Research and Clinical Oncology, 1995, 121, 516-520.	1.2	118
69	Possible involvement of the transcription factor ISGF3 \hat{I}^3 in virus-induced expression of the IFN- \hat{I}^2 gene. FEBS Letters, 1995, 358, 225-229.	1.3	44
70	Secondary structure and folding topology of the DNA binding domain of interferon regulatory factor 2, as revealed by NMR spectroscopy. FEBS Letters, 1995, 359, 184-188.	1.3	17
71	IRF-1 Functions as a Tumor Suppressor. , 1995, , 77-88.		0
72	Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell, 1994, 77, 829-839.	13.5	494

#	Article	IF	CITATIONS
73	Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science, 1994, 263, 1612-1615.	6.0	814
74	Involvement of the IRF-1 transcription factor in antiviral responses to interferons. Science, 1994, 264, 1921-1924.	6.0	292
75	Unique Structure of the DNA Binding Domain of Interferon Regulatory Factor 2 Determined by NMR Spectroscopy Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1994, 70, 200-204.	1.6	0
76	Regulation of Cell Growth by Transcription Factors, IRF-1 and IRF-2., 1994, , 201-212.		0
77	Anti-oncogenic and oncogenic potentials of interferon regulatory factors-1 and -2. Science, 1993, 259, 971-974.	6.0	451
78	Deletion of IRF-1, mapping to chromosome 5q31.1, in human leukemia and preleukemic myelodysplasia. Science, 1993, 259, 968-971.	6.0	398
79	Assignment of the human interferon regulatory factor-1 (IRF1) gene to chromosome 5q23–q31. Genomics, 1991, 10, 1097-1099.	1.3	48
80	The human interleukin-2 receptor \hat{l}^2 -chain gene: genomic organization, promoter analysis and chromosomal assignment. Nucleic Acids Research, 1990, 18, 3697-3703.	6.5	91
81	Absence of the type I IFN system in EC cells: Transcriptional activator (IRF-1) and repressor (IRF-2) genes are developmentally regulated. Cell, 1990, 63, 303-312.	13.5	381
82	Sequence of a cDNA coding for human IRF-2. Nucleic Acids Research, 1989, 17, 8372-8372.	6.5	40
83	Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes. Cell, 1989, 58, 729-739.	13.5	965
84	Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN- \hat{l}^2 gene regulatory elements. Cell, 1988, 54, 903-913.	13.5	991
85	Evidence for aberrant activation of the interleukin-2 autocrine loop by HTLV-1-encoded p40x and T3/Ti complex triggering. Cell, 1987, 48, 343-350.	13.5	498
86	Two Step Activation of the Interleukin-2 Autocrine Loop May be Involved in ATL Development. , 1987 , , $161-169$.		1
87	Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature, 1986, 324, 73-76.	13.7	2,028