Ben Wielockx

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4752466/publications.pdf

Version: 2024-02-01

85 papers

4,394 citations

32 h-index 63 g-index

95 all docs 95 docs citations

95 times ranked 6868 citing authors

#	Article	IF	CITATIONS
1	Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell, 2018, 172, 147-161.e12.	13.5	702
2	Innate Immune Training of Granulopoiesis Promotes Anti-tumor Activity. Cell, 2020, 183, 771-785.e12.	13.5	277
3	DEL-1 promotes macrophage efferocytosis and clearance of inflammation. Nature Immunology, 2019, 20, 40-49.	7.0	182
4	HSP70 Protects against TNF-Induced Lethal Inflammatory Shock. Immunity, 2002, 16, 685-695.	6.6	178
5	Inhibition of matrix metalloproteinases blocks lethal hepatitis and apoptosis induced by tumor necrosis factor and allows safe antitumor therapy. Nature Medicine, 2001, 7, 1202-1208.	15.2	169
6	MMPâ€⊋ and MMPâ€9 synergize in promoting choroidal neovascularization. FASEB Journal, 2003, 17, 2290-2292.	0.2	159
7	Contribution of host MMPâ€2 and MMPâ€9 to promote tumor vascularization and invasion of malignant keratinocytes. FASEB Journal, 2005, 19, 1-17.	0.2	159
8	$HIF-1\hat{1}\pm Promotes$ Glutamine-Mediated Redox Homeostasis and Glycogen-Dependent Bioenergetics to Support Postimplantation Bone Cell Survival. Cell Metabolism, 2016, 23, 265-279.	7.2	142
9	The ACE-2 in COVID-19: Foe or Friend?. Hormone and Metabolic Research, 2020, 52, 257-263.	0.7	130
10	Hypoxia Pathway Proteins As Central Mediators of Metabolism in the Tumor Cells and Their Microenvironment. Frontiers in Immunology, 2018, 9, 40.	2.2	110
11	Ferritin-Mediated Iron Sequestration Stabilizes Hypoxia-Inducible Factor-1α upon LPS Activation in the Presence of Ample Oxygen. Cell Reports, 2015, 13, 2048-2055.	2.9	106
12	Resistance of Collagenase-2 (Matrix Metalloproteinase-8)-Deficient Mice to TNF-Induced Lethal Hepatitis. Journal of Immunology, 2005, 175, 7642-7649.	0.4	97
13	Erythropoietin directly stimulates osteoclast precursors and induces bone loss. FASEB Journal, 2015, 29, 1890-1900.	0.2	95
14	Erythrocytosis: the HIF pathway in control. Blood, 2013, 122, 1122-1128.	0.6	91
15	Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. Journal of Clinical Investigation, 2018, 128, 3840-3852.	3.9	79
16	Secreted protein Del-1 regulates myelopoiesis in the hematopoietic stem cell niche. Journal of Clinical Investigation, 2017, 127, 3624-3639.	3.9	78
17	Cardiomyocyte-specific Prolyl-4-hydroxylase Domain 2 Knock Out Protects from Acute Myocardial Ischemic Injury. Journal of Biological Chemistry, 2011, 286, 11185-11194.	1.6	74
18	Exercise-Induced Activated Platelets Increase Adult Hippocampal Precursor Proliferation and Promote Neuronal Differentiation. Stem Cell Reports, 2019, 12, 667-679.	2.3	68

#	Article	IF	CITATIONS
19	HIF-1α is a protective factor in conditional PHD2-deficient mice suffering from severe HIF-2α–induced excessive erythropoiesis. Blood, 2013, 121, 1436-1445.	0.6	67
20	Inhibition of HIF Prolyl Hydroxylase-2 Blocks Tumor Growth in Mice through the Antiproliferative Activity of TGFÎ ² . Cancer Research, 2011, 71, 3306-3316.	0.4	66
21	Neuron-Specific Prolyl-4-Hydroxylase Domain 2 Knockout Reduces Brain Injury After Transient Cerebral Ischemia. Stroke, 2012, 43, 2748-2756.	1.0	65
22	Matrilysin (matrix metalloproteinase-7): a new promising drug target in cancer and inflammation?. Cytokine and Growth Factor Reviews, 2004, 15, 111-115.	3.2	61
23	Loss of Epithelial Hypoxia-Inducible Factor Prolyl Hydroxylase 2 Accelerates Skin Wound Healing in Mice. Molecular and Cellular Biology, 2013, 33, 3426-3438.	1.1	61
24	Hematopoietic stem cells can differentiate into restricted myeloid progenitors before cell division in mice. Nature Communications, 2018, 9, 1898.	5.8	61
25	Hypoxiaâ€inducible factors as key regulators of tumor inflammation. International Journal of Cancer, 2013, 132, 2721-2729.	2.3	60
26	PHD2: from hypoxia regulation to disease progression. Hypoxia (Auckland, N Z), 2016, 4, 53.	1.9	60
27	Increased EPO Levels Are Associated With Bone Loss in Mice Lacking PHD2 in EPO-Producing Cells. Journal of Bone and Mineral Research, 2016, 31, 1877-1887.	3.1	56
28	Short-Term Hypoxia Dampens Inflammation in vivo via Enhanced Adenosine Release and Adenosine 2B Receptor Stimulation. EBioMedicine, 2018, 33, 144-156.	2.7	47
29	Adenoviral gene transfer of ABIN-1 protects mice from TNF/galactosamine-induced acute liver failure and lethality. Hepatology, 2005, 42, 381-389.	3.6	45
30	HIF prolyl hydroxylase 2 (PHD2) is a critical regulator of hematopoietic stem cell maintenance during steady-state and stress. Blood, 2013, 121, 5158-5166.	0.6	41
31	Interaction of endothelial cells with macrophages—linking molecular and metabolic signaling. Pflugers Archiv European Journal of Physiology, 2017, 469, 473-483.	1.3	39
32	Hypoxia Pathway Proteins in Normal and Malignant Hematopoiesis. Cells, 2019, 8, 155.	1.8	34
33	Interplay between neural-cadherin and vascular endothelial-cadherin in breast cancer progression. Breast Cancer Research, 2012, 14, R154.	2.2	33
34	HIF2α supports pro-metastatic behavior in pheochromocytomas/paragangliomas. Endocrine-Related Cancer, 2020, 27, 625-640.	1.6	33
35	Hyporesponsiveness of SPRET/Ei mice to lethal shock induced by tumor necrosis factor and implications for a TNF-based antitumor therapy. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9340-9345.	3.3	32
36	Haematopoietic prolyl hydroxylase†deficiency promotes M2 macrophage polarization and is both necessary and sufficient to protect against experimental colitis. Journal of Pathology, 2017, 241, 547-558.	2.1	32

#	Article	IF	Citations
37	Overexpression of factor inhibiting HIFâ€1 enhances vessel maturation and tumor growth ⟨i⟩via⟨ i⟩ plateletâ€derived growth factorâ€C. International Journal of Cancer, 2012, 131, E603-13.	2.3	30
38	Loss of prolyl hydroxylaseâ€2 in myeloid cells and Tâ€lymphocytes impairs tumor development. International Journal of Cancer, 2014, 134, 849-858.	2.3	30
39	Hematopoietic Stem Cells but Not Multipotent Progenitors Drive Erythropoiesis during Chronic Erythroid Stress in EPO Transgenic Mice. Stem Cell Reports, 2018, 10, 1908-1919.	2.3	28
40	Identification of a Locus on Distal Mouse Chromosome 12 That Controls Resistance to Tumor Necrosis Factor-Induced Lethal Shock. Genomics, 1999, 55, 284-289.	1.3	27
41	Hypoxia Pathway Proteins are Master Regulators of Erythropoiesis. International Journal of Molecular Sciences, 2020, 21, 8131.	1.8	27
42	PHD2 Is a Regulator for Glycolytic Reprogramming in Macrophages. Molecular and Cellular Biology, 2017, 37, .	1.1	25
43	Hypoxia Pathway Proteins and Their Impact on the Blood Vasculature. International Journal of Molecular Sciences, 2021, 22, 9191.	1.8	24
44	Regulation of endothelial migration and proliferation by ephrin-A1. Cellular Signalling, 2017, 29, 84-95.	1.7	23
45	HIF prolyl hydroxylase-2 inhibition diminishes tumor growth through matrix metalloproteinase-induced TGF \hat{l}^2 activation. Cancer Biology and Therapy, 2012, 13, 216-223.	1.5	21
46	Inflammatory Modulation of Hematopoiesis: Linking Trained Immunity and Clonal Hematopoiesis with Chronic Disorders. Annual Review of Physiology, 2022, 84, 183-207.	5.6	21
47	PHD4 Stimulates Tumor Angiogenesis in Osteosarcoma Cells via TGF-α. Molecular Cancer Research, 2013, 11, 1337-1348.	1.5	20
48	Cancer Stem Cells in Pheochromocytoma and Paraganglioma. Frontiers in Endocrinology, 2020, 11, 79.	1.5	20
49	Hematopoietic stem cell response to acute thrombocytopenia requires signaling through distinct receptor tyrosine kinases. Blood, 2019, 134, 1046-1058.	0.6	18
50	Erythropoietin receptor in B cells plays a role in bone remodeling in mice. Theranostics, 2020, 10, 8744-8756.	4.6	18
51	Diminished PLK2 Induces Cardiac Fibrosis and Promotes Atrial Fibrillation. Circulation Research, 2021, 129, 804-820.	2.0	18
52	Hypoxia-Mediated Regulation of Stem Cell Fate. High Altitude Medicine and Biology, 2012, 13, 162-168.	0.5	17
53	Endothelial Cell–Specific Overexpression of Del-1 Drives Expansion of Haematopoietic Progenitor Cells in the Bone Marrow. Thrombosis and Haemostasis, 2018, 118, 613-616.	1.8	16
54	HIF-Prolyl Hydroxylase Domain Proteins (PHDs) in Cancerâ€"Potential Targets for Anti-Tumor Therapy?. Cancers, 2021, 13, 988.	1.7	16

#	Article	IF	CITATIONS
55	Hematopoietic hypoxiaâ€inducible factor 2α deficiency ameliorates pathological retinal neovascularization ⟨i>via⟨ i> modulation of endothelial cell apoptosis. FASEB Journal, 2019, 33, 1758-1770.	0.2	15
56	$HIF1\hat{l}\pm$ is a direct regulator of steroidogenesis in the adrenal gland. Cellular and Molecular Life Sciences, 2021, 78, 3577-3590.	2.4	15
57	Hypoxia-Inducible Factors Regulate Osteoclasts in Health and Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 658893.	1.8	14
58	Epo/EpoR signaling in osteoprogenitor cells is essential for bone homeostasis and Epo-induced bone loss. Bone Research, 2021, 9, 42.	5.4	14
59	HIF2α is a direct regulator of neutrophil motility. Blood, 2021, 137, 3416-3427.	0.6	13
60	THE ROLE OF COMPLEMENT ACTIVATION IN TUMOUR NECROSIS FACTOR-INDUCED LETHAL HEPATITIS. Cytokine, 1999, 11, 617-625.	1.4	12
61	Involvement of specific matrix metalloproteinases during tumor necrosis factor/IFNγ–based cancer therapy in mice. Molecular Cancer Therapeutics, 2007, 6, 2563-2571.	1.9	11
62	The use of tissue inhibitors of matrix metalloproteinases to increase the efficacy of a tumor necrosis factor/interferon \hat{l}^3 antitumor therapy. Cancer Gene Therapy, 2007, 14, 372-379.	2.2	10
63	HIF2α regulates the synthesis and release of epinephrine in the adrenal medulla. Journal of Molecular Medicine, 2021, 99, 1655-1666.	1.7	9
64	Erythropoietin Mediated Bone Loss in Mice Is Dose-Dependent and Mostly Irreversible. International Journal of Molecular Sciences, 2020, 21, 3817.	1.8	8
65	Adrenal Hormone Interactions and Metabolism: A Single Sample Multi-Omics Approach. Hormone and Metabolic Research, 2021, 53, 326-334.	0.7	8
66	Involvement of a serine protease, but not of neutrophil elastase, in tumor necrosis factor-induced lethal hepatitis and induction of platelet-activating factor. Journal of Hepatology, 2001, 35, 490-497.	1.8	7
67	Reprogramming of glucocorticoid receptor function by hypoxia. EMBO Reports, 2022, 23, e53083.	2.0	7
68	Characterization of Adrenal miRNA-Based Dysregulations in Cushing's Syndrome. International Journal of Molecular Sciences, 2022, 23, 7676.	1.8	7
69	HIF in Vascular Development and Tumour Angiogenesis. Novartis Foundation Symposium, 2007, 283, 126-138.	1.2	6
70	PHD3 Acts as Tumor Suppressor in Mouse Osteosarcoma and Influences Tumor Vascularization via PDGF-C Signaling. Cancers, 2018, 10, 496.	1.7	5
71	Liquid chromatography-tandem mass spectrometry based quantification of arginine metabolites including polyamines in different sample matrices. Journal of Chromatography A, 2022, 1671, 463021.	1.8	5
72	Myeloid PHD2 deficiency accelerates neointima formation via Hif- $1\hat{i}_{\pm}$. Molecular Immunology, 2022, 149, 48-58.	1.0	5

#	Article	IF	Citations
73	DETECTION, CHARACTERISATION AND PURIFICATION OF A MURINE LIVER FACTOR CAPABLE OF DESENSITISING TOWARDS THE LETHAL ACTIVITY OF TUMOUR NECROSIS FACTOR. Cytokine, 2001, 15, 59-65.	1.4	3
74	HIF-pathway proteins: central regulators of tumor immunology. Translational Cancer Research, 2016, 5, S1503-S1508.	0.4	3
75	Iron- and erythropoietin-resistant anemia in a spontaneous breast cancer mouse model. Haematologica, 2022, 107, 2454-2465.	1.7	3
76	Serine proteases of the fibrinolysis pathway are not involved in lethal hepatitis and fibrinogen breakdown induced by tumor necrosis factor. Cytokine, 2003, 21, 281-285.	1.4	2
77	Description and Mapping of the Resistance of DBA/2 Mice to TNF-Induced Lethal Shock. Journal of Immunology, 2007, 178, 5069-5075.	0.4	2
78	PHDâ€"2 KNOCKOUT PROMOTES PLAQUE PROGRESSION VIA HIFla AND INCREASES THE EXPRESSION OF MACâ€"1, PSGLâ€"1 AND VLAâ€"4 ON MONOCYTES AND GRANULOCYTES IN MICE. Journal of the American College of Cardiology, 2013, 61, E1829.	1.2	2
79	Acute thrombocytopenia induces activation of long-term hematopoietic stem cells and leads to multipotent progenitor's exhaustion. Experimental Hematology, 2017, 53, S70.	0.2	0
80	Chronic exposure to high erythropoietin levels differentially modulates the hematopoietic stem cell compartment in mice. Experimental Hematology, 2017, 53, S76.	0.2	0
81	Cell cycle progression and fate decisions in hematopoietic stem cells. Experimental Hematology, 2017, 53, S102.	0.2	0
82	HIF prolyl hydroxylase 2 (PHD2) controls bone homeostasis through HIF2[alpha] - a novel player in osteohematology. Bone Abstracts, 0, , .	0.0	0
83	Erythropoietin Stimulates Bone Resorption Via Direct Activation of the Monocytic Lineage and Via Increased RANKL Production By B Cells and Osteoblasts. Blood, 2014, 124, 247-247.	0.6	O
84	Erythropoietin (EPO) Regulates Bone Mass Via EPO Receptors on Myeloid and Lymphocytic Cells. Blood, 2018, 132, 846-846.	0.6	0
85	B Cell Specific Knockdown of the Erythropoietin (EPO) Receptor Attenuates EPO-Induced Bone Loss in Mice. Blood, 2019, 134, 939-939.	0.6	0