List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/475224/publications.pdf Version: 2024-02-01

LUISA LICEDO

#	Article	IF	CITATIONS
1	Ritanserin, a 5-HT2 receptor antagonist, activates midbrain dopamine neurons by blocking serotonergic inhibition. Psychopharmacology, 1989, 98, 45-50.	3.1	255
2	Modulation of Anxiety-Like Behavior and Morphine Dependence in CREB-Deficient Mice. Neuropsychopharmacology, 2004, 29, 1122-1133.	5.4	107
3	Firing patterns of midbrain dopamine neurons: differences between A9 and A10 cells. Acta Physiologica Scandinavica, 1988, 134, 127-132.	2.2	77
4	Interaction between the 5-HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson's disease. Frontiers in Neural Circuits, 2014, 8, 21.	2.8	77
5	Beneficial effects of n-3 polyunsaturated fatty acids administration in a partial lesion model of Parkinson's disease: The role of glia and NRf2 regulation. Neurobiology of Disease, 2019, 121, 252-262.	4.4	67
6	A comprehensive analysis of the effect of DSP4 on the locus coeruleus noradrenergic system in the rat. Neuroscience, 2010, 166, 279-291.	2.3	65
7	Long-term survival of encapsulated GDNF secreting cells implanted within the striatum of parkinsonized rats. International Journal of Pharmaceutics, 2007, 343, 69-78.	5.2	64
8	Control of serotonergic neurons in rat brain by dopaminergic receptors outside the dorsal raphe nucleus. Journal of Neurochemistry, 2001, 77, 762-775.	3.9	62
9	In vivo administration of VEGF- and GDNF-releasing biodegradable polymeric microspheres in a severe lesion model of Parkinson's disease. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 1183-1190.	4.3	58
10	Peripheral induction of burst firing in locus coeruleus neurons by nicotine mediated via excitatory amino acids. Synapse, 1989, 4, 313-318.	1.2	50
11	Effects of amperozide, a putative antipsychotic drug, on rat midbrain dopamine neurons recorded <i>in vivo</i> . Basic and Clinical Pharmacology and Toxicology, 1990, 66, 29-33.	0.0	49
12	Electrophysiological evidence for postsynaptic 5-HT1A receptor control of dorsal raphe 5-HT neurones. Neuropharmacology, 2001, 41, 72-78.	4.1	49
13	Stimulatory effects of clonidine, cirazoline and rilmenidine on locus coeruleus noradrenergic neurones: possible involvement of imidazoline-preferring receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1993, 348, 134-140.	3.0	48
14	Depressive-like behavior observed with a minimal loss of locus coeruleus (LC) neurons following administration of 6-hydroxydopamine is associated with electrophysiological changes and reversed with precursors of norepinephrine. Neuropharmacology, 2016, 101, 76-86.	4.1	46
15	The locus coeruleus Is Directly Implicated in L-DOPA-Induced Dyskinesia in Parkinsonian Rats: An Electrophysiological and Behavioural Study. PLoS ONE, 2011, 6, e24679.	2.5	44
16	Modulation of brain ?2-adrenoceptor and ?-opioid receptor densities during morphine dependence and spontaneous withdrawal in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 1987, 336, 530-7.	3.0	43
17	Locus coeruleus and dorsal raphe neuron activity and response to acute antidepressant administration in a rat model of Parkinson's disease. International Journal of Neuropsychopharmacology, 2011, 14, 187-200.	2.1	43
18	Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson's disease. International Journal of Nanomedicine, 2014, 9, 2677.	6.7	42

#	Article	IF	CITATIONS
19	Inhibition of 5-hydroxytryptamine reuptake by the antidepressant citalopram in the locus coeruleus modulates the rat brain noradrenergic transmission in vivo. Neuropharmacology, 2000, 39, 2036-2043.	4.1	38
20	Deletion of GIRK2 Subunit of GIRK Channels Alters the 5-HT _{1A} Receptor-Mediated Signaling and Results in a Depression-Resistant Behavior. International Journal of Neuropsychopharmacology, 2015, 18, pyv051.	2.1	34
21	Comparative study of the effects of desipramine and reboxetine on locus coeruleus neurons in rat brain slices. Neuropharmacology, 2004, 46, 815-823.	4.1	33
22	Fast and Efficient Neural Conversion of Human Hematopoietic Cells. Stem Cell Reports, 2014, 3, 1118-1131.	4.8	33
23	Attenuation of withdrawal-induced hyperactivity of locus coeruleus neurones by inhibitors of nitric oxide synthase in morphine-dependent rats. Neuropharmacology, 1998, 37, 759-767.	4.1	31
24	Stimulatory effect of harmane and other β-carbolines on locus coeruleus neurons in anaesthetized rats. Neuroscience Letters, 2001, 308, 197-200.	2.1	31
25	Attenuation of acute and chronic effects of morphine by the imidazoline receptor ligand 2-(2-benzofuranyl)-2-imidazoline in rat locus coeruleus neurons. British Journal of Pharmacology, 2003, 138, 494-500.	5.4	31
26	The Role of the Subthalamic Nucleus in L-DOPA Induced Dyskinesia in 6-Hydroxydopamine Lesioned Rats. PLoS ONE, 2012, 7, e42652.	2.5	31
27	In vivo effect of tramadol on locus coeruleus neurons is mediated by α2-adrenoceptors and modulated by serotonin. Neuropharmacology, 2006, 51, 146-153.	4.1	30
28	Chronic L-DOPA administration increases the firing rate but does not reverse enhanced slow frequency oscillatory activity and synchronization in substantia nigra pars reticulata neurons from 6-hydroxydopamine-lesioned rats. Neurobiology of Disease, 2016, 89, 88-100.	4.4	30
29	Agmatine does not have activity at α2-adrenoceptors which modulate the firing rate of locus coeruleus neurones: an electrophysiological study in rat. Neuroscience Letters, 1996, 219, 103-106.	2.1	28
30	Effect of agmatine on locus coeruleus neuron activity: possible involvement of nitric oxide. British Journal of Pharmacology, 2002, 135, 1152-1158.	5.4	28
31	Endocannabinoid Modulation of Dopaminergic Motor Circuits. Frontiers in Pharmacology, 2012, 3, 110.	3.5	28
32	Inhibitory Transmission in Locus Coeruleus Neurons Expressing GABAA Receptor Epsilon Subunit Has a Number of Unique Properties. Journal of Neurophysiology, 2009, 102, 2312-2325.	1.8	26
33	Ketamine promotes rapid and transient activation of AMPA receptor-mediated synaptic transmission in the dorsal raphe nucleus. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 88, 243-252.	4.8	26
34	The Neuroprotective Effect of Conditioned Medium from Human Adipose-Derived Mesenchymal Stem Cells is Impaired by N-acetyl Cysteine Supplementation. Molecular Neurobiology, 2018, 55, 13-25.	4.0	25
35	Electrophysiological characterization of substantia nigra dopaminergic neurons in partially lesioned rats: Effects of subthalamotomy and levodopa treatment. Brain Research, 2006, 1084, 175-184.	2.2	24
36	Buspirone anti-dyskinetic effect is correlated with temporal normalization of dysregulated striatal DRD1 signalling in I-DOPA-treated rats. Neuropharmacology, 2014, 79, 726-737.	4.1	24

#	Article	IF	CITATIONS
37	The stimulatory effect of clonidine on locus coeruleus neurons of rats with inactivated α2-adrenoceptors: involvement of imidazoline receptors located in the nucleus paragigantocellularis. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 355, 288-294.	3.0	23
38	Stimulation of locus coeruleus neurons by non-l1 /l2 -type imidazoline receptors: an in vivo and in vitro electrophysiological study. British Journal of Pharmacology, 1998, 125, 1685-1694.	5.4	23
39	Altered neuronal activity and differential sensitivity to acute antidepressants of locus coeruleus and dorsal raphe nucleus in Wistar Kyoto rats: A comparative study with Sprague Dawley and Wistar rats. European Neuropsychopharmacology, 2014, 24, 1112-1122.	0.7	22
40	Platelet α-adrenoceptors in heroin addicts during withdrawal and after treatment with clonidine. European Journal of Pharmacology, 1985, 114, 365-374.	3.5	21
41	α2-Adrenoceptor involvement in the in vitro inhibitory effect of citalopram on a subpopulation of rat locus coeruleus neurons. European Journal of Pharmacology, 2005, 517, 51-58.	3.5	20
42	l-DOPA modifies the antidepressant-like effects of reboxetine and fluoxetine inÂrats. Neuropharmacology, 2013, 67, 349-358.	4.1	20
43	Effects of adult enriched environment on cognition, hippocampal-prefrontal plasticity and NMDAR subunit expression in MK-801-induced schizophrenia model. European Neuropsychopharmacology, 2019, 29, 590-600.	0.7	20
44	?2-Adrenoceptor-mediated inhibition of platelet adenylate cyclase activity in heroin addicts in abstinence. Psychopharmacology, 1987, 92, 320-323.	3.1	19
45	L-DOPA elicits non-vesicular releases of serotonin and dopamine in hemiparkinsonian rats in vivo. European Neuropsychopharmacology, 2016, 26, 1297-1309.	0.7	19
46	Buspirone requires the intact nigrostriatal pathway to reduce the activity of the subthalamic nucleus via 5-HT1A receptors. Experimental Neurology, 2016, 277, 35-45.	4.1	19
47	Impairment of Serotonergic Transmission by the Antiparkinsonian Drug L-DOPA: Mechanisms and Clinical Implications. Frontiers in Cellular Neuroscience, 2017, 11, 274.	3.7	19
48	Involvement of subthalamic nucleus in the stimulatory effect of Δ9-tetrahydrocannabinol on dopaminergic neurons. Neuroscience, 2008, 151, 817-823.	2.3	18
49	Modulation of the subthalamic nucleus activity by serotonergic agents and fluoxetine administration. Psychopharmacology, 2014, 231, 1913-1924.	3.1	18
50	Topographical Distribution of Morphological Changes in a Partial Model of Parkinson's Disease—Effects of Nanoencapsulated Neurotrophic Factors Administration. Molecular Neurobiology, 2015, 52, 846-858.	4.0	18
51	Dysfunction of serotonergic neurons in Parkinson's disease and dyskinesia. International Review of Neurobiology, 2019, 146, 259-279.	2.0	18
52	Acute and chronic effects of reserpine on biochemical and functional parameters of central and peripheral α2-adrenoceptors. European Journal of Pharmacology, 1993, 239, 149-157.	3.5	16
53	Agmatine-Morphine Interaction on Nociception in Mice. Annals of the New York Academy of Sciences, 2003, 1009, 133-136.	3.8	16
54	α2-Adrenoceptors mediate the acute inhibitory effect of fluoxetine on locus coeruleus noradrenergic neurons. Neuropharmacology, 2009, 56, 1068-1073.	4.1	16

#	Article	IF	CITATIONS
55	Role of GIRK channels on the noradrenergic transmission in vivo: an electrophysiological and neurochemical study on GIRK2 mutant mice. International Journal of Neuropsychopharmacology, 2013, 16, 1093-1104.	2.1	16
56	Opioid Activity in the Locus Coeruleus Is Modulated by Chronic Neuropathic Pain. Molecular Neurobiology, 2019, 56, 4135-4150.	4.0	16
57	The stimulatory effect of clonidine through imidazoline receptors on locus coeruleus noradrenergic neurones is mediated by excitatory amino acids and modulated by serotonin. Naunyn-Schmiedeberg's Archives of Pharmacology, 1995, 352, 121-6.	3.0	14
58	Nigrostriatal denervation changes the effect of cannabinoids on subthalamic neuronal activity in rats. Psychopharmacology, 2011, 214, 379-389.	3.1	14
59	Heroin increases the density and sensitivity of platelet ?2-adrenoceptors in human addicts. Psychopharmacology, 1986, 88, 489-92.	3.1	12
60	Excitatory regulation of noradrenergic neurons by l-arginine/nitric oxide pathway in the rat locus coeruleus in vivo. Naunyn-Schmiedeberg's Archives of Pharmacology, 2007, 375, 337-347.	3.0	12
61	Inactivation of <scp>GIRK</scp> channels weakens the pre―and postsynaptic inhibitory activity in dorsal raphe neurons. Physiological Reports, 2017, 5, e13141.	1.7	12
62	Two opposite effects of Δ ⁹ -tetrahydrocannabinol on subthalamic nucleus neuron activity: Involvement of GABAergic and glutamatergic neurotransmission. Synapse, 2010, 64, 20-29.	1.2	11
63	Imidazoline-Induced Inhibition of Firing Rate of 5-HT Neurons in Rat Dorsal Raphe by Modulation of Extracellular 5-HT Levelsa. Annals of the New York Academy of Sciences, 1999, 881, 365-368.	3.8	10
64	Pharmacological treatment of Parkinson's disease: life beyond dopamine D2/D3 receptors?. Journal of Neural Transmission, 2008, 115, 431-441.	2.8	10
65	Cannabinoids differentially modulate cortical information transmission through the sensorimotor or medial prefrontal basal ganglia circuits. British Journal of Pharmacology, 2019, 176, 1156-1169.	5.4	10
66	6â€Hydroxydopamine lesion and levodopa treatment modify the effect of buspirone in the substantia nigra pars reticulata. British Journal of Pharmacology, 2020, 177, 3957-3974.	5.4	10
67	Activation of 5-HT1A receptors potentiates the clonidine inhibitory effect in the locus coeruleus. European Journal of Pharmacology, 1997, 333, 159-162.	3.5	9
68	NO synthase inhibitors reduce opioid desensitization in rat locus coeruleus neurons in vitro. NeuroReport, 2001, 12, 1601-1604.	1.2	9
69	Enhanced \hat{I}_{\pm} 2A -autoreceptor reserve for clonidine induced by reserpine and cholinomimetic agents in the rat vas deferens. British Journal of Pharmacology, 1997, 122, 833-840.	5.4	8
70	Regulation of subthalamic neuron activity by endocannabinoids. Synapse, 2010, 64, 682-698.	1.2	8
71	Nanodelivery of therapeutic agents in Parkinson's disease. Progress in Brain Research, 2019, 245, 263-279.	1.4	8
72	Changes in Day/Night Activity in the 6-OHDA-Induced Experimental Model of Parkinson's Disease: Exploring Prodromal Biomarkers. Frontiers in Neuroscience, 2020, 14, 590029.	2.8	8

#	Article	IF	CITATIONS
73	Dopaminergic denervation impairs cortical motor and associative/limbic information processing through the basal ganglia and its modulation by the CB1 receptor. Neurobiology of Disease, 2021, 148, 105214.	4.4	8
74	Chronic citalopram administration desensitizes prefrontal cortex but not somatodendritic α2-adrenoceptors in rat brain. Neuropharmacology, 2017, 114, 114-122.	4.1	7
75	Short-term effects of 3,4-methylenedioximethamphetamine on noradrenergic activity in locus coeruleus and hippocampus of the rat. Neuroscience Letters, 2003, 337, 123-126.	2.1	6
76	Heroin addicts have increased platelet α2-adrenoceptor densities which correlate with the severity of the abstinence syndrome. European Journal of Pharmacology, 1984, 100, 131-132.	3.5	5
77	Acute and chronic effects of cholinesterase inhibitors and pilocarpine on the density and sensitivity of central and peripheral α2-adrenoceptors. European Journal of Pharmacology, 1993, 236, 467-476.	3.5	5
78	The Stimulatory Effect of Clonidine on Locus Coeruleus Noradrenergic Neurons through Imidazoline Receptors Is Modulated by Excitatory Amino Acids. Annals of the New York Academy of Sciences, 1995, 763, 501-505.	3.8	3
79	Serotonergic control of the glutamatergic neurons of the subthalamic nucleus. Progress in Brain Research, 2021, 261, 423-462.	1.4	3
80	The effect of 5â€HT 1A receptor agonists on the entopeduncular nucleus is modified in 6â€hydroxydopamineâ€lesioned rats. British Journal of Pharmacology, 2021, 178, 2516-2532.	5.4	3
81	Pilocarpine Treatments Differentially Affect α ₂ â€Adrenoceptors which Modulate the Firing Rate of Locus coeruleus Neurones and the Synthesis and Release of Noradrenaline in Rat Brain. Basic and Clinical Pharmacology and Toxicology, 1999, 85, 74-79.	0.0	2
82	Acute and long-term administration of citalopram desensitizes α2-adrenoceptors in the rat vas deferens. Journal of Pharmacy and Pharmacology, 2010, 58, 367-373.	2.4	1