
Kenneth D Harris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4752069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Architecture of the Mouse Nervous System. Cell, 2018, 174, 999-1014.e22.	13.5	2,002
2	Fully integrated silicon probes for high-density recording of neural activity. Nature, 2017, 551, 232-236.	13.7	1,531
3	Spontaneous behaviors drive multidimensional, brainwide activity. Science, 2019, 364, 255.	6.0	1,013
4	The Asynchronous State in Cortical Circuits. Science, 2010, 327, 587-590.	6.0	955
5	The neocortical circuit: themes and variations. Nature Neuroscience, 2015, 18, 170-181.	7.1	880
6	Organization of cell assemblies in the hippocampus. Nature, 2003, 424, 552-556.	13.7	788
7	Cortical state and attention. Nature Reviews Neuroscience, 2011, 12, 509-523.	4.9	749
8	Characterization of Neocortical Principal Cells and Interneurons by Network Interactions and Extracellular Features. Journal of Neurophysiology, 2004, 92, 600-608.	0.9	734
9	Laminar Structure of Spontaneous and Sensory-Evoked Population Activity in Auditory Cortex. Neuron, 2009, 64, 404-418.	3.8	544
10	Cortical connectivity and sensory coding. Nature, 2013, 503, 51-58.	13.7	536
11	Spontaneous Events Outline the Realm of Possible Sensory Responses in Neocortical Populations. Neuron, 2009, 62, 413-425.	3.8	499
12	Sequential structure of neocortical spontaneous activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 347-352.	3.3	477
13	Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science, 2021, 372, .	6.0	467
14	Distributed coding of choice, action and engagement across the mouse brain. Nature, 2019, 576, 266-273.	13.7	452
15	Diverse coupling of neurons to populations in sensory cortex. Nature, 2015, 521, 511-515.	13.7	393
16	Massively Parallel Recording of Unit and Local Field Potentials With Silicon-Based Electrodes. Journal of Neurophysiology, 2003, 90, 1314-1323.	0.9	371
17	High-dimensional geometry of population responses in visual cortex. Nature, 2019, 571, 361-365.	13.7	370
18	Integration of visual motion and locomotion in mouse visual cortex. Nature Neuroscience, 2013, 16, 1864-1869.	7.1	353

#	Article	IF	CITATIONS
19	Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. Nature, 2002, 417, 738-741.	13.7	343
20	Temporal Interaction between Single Spikes and Complex Spike Bursts in Hippocampal Pyramidal Cells. Neuron, 2001, 32, 141-149.	3.8	339
21	High-Dimensional Cluster Analysis with the Masked EM Algorithm. Neural Computation, 2014, 26, 2379-2394.	1.3	271
22	Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Nature Reviews Neuroscience, 2013, 14, 443-451.	4.9	244
23	Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics. PLoS Biology, 2018, 16, e2006387.	2.6	226
24	Aberrant Cortical Activity in Multiple GCaMP6-Expressing Transgenic Mouse Lines. ENeuro, 2017, 4, ENEURO.0207-17.2017.	0.9	221
25	Improving data quality in neuronal population recordings. Nature Neuroscience, 2016, 19, 1165-1174.	7.1	210
26	The Nature of Shared Cortical Variability. Neuron, 2015, 87, 644-656.	3.8	208
27	Cortical State Determines Global Variability and Correlations in Visual Cortex. Journal of Neuroscience, 2015, 35, 170-178.	1.7	207
28	Vision and Locomotion Shape the Interactions between Neuron Types in Mouse Visual Cortex. Neuron, 2018, 98, 602-615.e8.	3.8	204
29	Coherent encoding of subjective spatial position in visual cortex and hippocampus. Nature, 2018, 562, 124-127.	13.7	197
30	Probabilistic cell typing enables fine mapping of closely related cell types in situ. Nature Methods, 2020, 17, 101-106.	9.0	187
31	Towards reliable spike-train recordings from thousands of neurons with multielectrodes. Current Opinion in Neurobiology, 2012, 22, 11-17.	2.0	184
32	Diversity of Interneurons in the Dorsal Striatum Revealed by Single-Cell RNA Sequencing and PatchSeq. Cell Reports, 2018, 24, 2179-2190.e7.	2.9	178
33	Place Representation within Hippocampal Networks Is Modified by Long-Term Potentiation. Neuron, 2003, 39, 843-853.	3.8	176
34	Early cognitive and language skills are linked to resting frontal gamma power across the first 3 years. Behavioural Brain Research, 2008, 195, 215-222.	1.2	174
35	Neurodata Without Borders: Creating a Common Data Format for Neurophysiology. Neuron, 2015, 88, 629-634.	3.8	171
36	Gating of Sensory Input by Spontaneous Cortical Activity. Journal of Neuroscience, 2013, 33, 1684-1695.	1.7	168

#	Article	IF	CITATIONS
37	Packet-based communication in the cortex. Nature Reviews Neuroscience, 2015, 16, 745-755.	4.9	160
38	High-Yield Methods for Accurate Two-Alternative Visual Psychophysics in Head-Fixed Mice. Cell Reports, 2017, 20, 2513-2524.	2.9	152
39	A Simple Model of Cortical Dynamics Explains Variability and State Dependence of Sensory Responses in Urethane-Anesthetized Auditory Cortex. Journal of Neuroscience, 2009, 29, 10600-10612.	1.7	151
40	Robustness of Spike Deconvolution for Neuronal Calcium Imaging. Journal of Neuroscience, 2018, 38, 7976-7985.	1.7	143
41	Subcortical Source and Modulation of the Narrowband Gamma Oscillation in Mouse Visual Cortex. Neuron, 2017, 93, 315-322.	3.8	140
42	Striatal activity topographically reflects cortical activity. Nature, 2021, 591, 420-425.	13.7	139
43	Community-based benchmarking improves spike rate inference from two-photon calcium imaging data. PLoS Computational Biology, 2018, 14, e1006157.	1.5	118
44	A genuine layer 4 in motor cortex with prototypical synaptic circuit connectivity. ELife, 2014, 3, e05422.	2.8	114
45	Ongoing Network State Controls the Length of Sleep Spindles via Inhibitory Activity. Neuron, 2014, 82, 1367-1379.	3.8	109
46	Dopaminergic and Prefrontal Basis of Learning from Sensory Confidence and Reward Value. Neuron, 2020, 105, 700-711.e6.	3.8	109
47	State-Dependent Representation of Amplitude-Modulated Noise Stimuli in Rat Auditory Cortex. Journal of Neuroscience, 2011, 31, 6414-6420.	1.7	95
48	Arousal Modulates Retinal Output. Neuron, 2020, 107, 487-495.e9.	3.8	90
49	Spatial connectivity matches direction selectivity in visual cortex. Nature, 2020, 588, 648-652.	13.7	87
50	Stability of the fittest: organizing learning through retroaxonal signals. Trends in Neurosciences, 2008, 31, 130-136.	4.2	85
51	Inhibitory control of correlated intrinsic variability in cortical networks. ELife, 2016, 5, .	2.8	83
52	Decision and navigation in mouse parietal cortex. ELife, 2018, 7, .	2.8	74
53	Long Term Recordings with Immobile Silicon Probes in the Mouse Cortex. PLoS ONE, 2016, 11, e0151180.	1.1	72
54	Effects of Arousal on Mouse Sensory Cortex Depend on Modality. Cell Reports, 2018, 22, 3160-3167.	2.9	71

#	Article	IF	CITATIONS
55	A Computational Model of Cholinergic Disruption of Septohippocampal Activity in Classical Eyeblink Conditioning. Neurobiology of Learning and Memory, 1996, 66, 51-66.	1.0	67
56	Stochastic transitions into silence cause noise correlations in cortical circuits. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3529-3534.	3.3	64
57	Sensory coding and the causal impact of mouse cortex in a visual decision. ELife, 2021, 10, .	2.8	63
58	Methods for predicting cortical UP and DOWN states from the phase of deep layer local field potentials. Journal of Computational Neuroscience, 2010, 29, 49-62.	0.6	61
59	Memory for places: A navigational model in support of Marr's theory of hippocampal function. , 1996, 6, 735-748.		60
60	The Upshot of Up States in the Neocortex: From Slow Oscillations to Memory Formation. Journal of Neuroscience, 2007, 27, 11838-11841.	1.7	59
61	Population Rate Dynamics and Multineuron Firing Patterns in Sensory Cortex. Journal of Neuroscience, 2012, 32, 17108-17119.	1.7	57
62	Laminar-dependent effects of cortical state on auditory cortical spontaneous activity. Frontiers in Neural Circuits, 2012, 6, 109.	1.4	56
63	Theta-Mediated Dynamics of Spatial Information in Hippocampus. Journal of Neuroscience, 2008, 28, 5959-5964.	1.7	54
64	The impact of bilateral ongoing activity on evoked responses in mouse cortex. ELife, 2019, 8, .	2.8	53
65	How do neurons work together? Lessons from auditory cortex. Hearing Research, 2011, 271, 37-53.	0.9	51
66	Distinct Structure of Cortical Population Activity on Fast and Infraslow Timescales. Cerebral Cortex, 2019, 29, 2196-2210.	1.6	50
67	Cortical State Fluctuations during Sensory Decision Making. Current Biology, 2020, 30, 4944-4955.e7.	1.8	48
68	Mouse Visual Cortex Is Modulated by Distance Traveled and by Theta Oscillations. Current Biology, 2020, 30, 3811-3817.e6.	1.8	47
69	Population coding of tone stimuli in auditory cortex: dynamic rate vector analysis. European Journal of Neuroscience, 2009, 30, 1767-1778.	1.2	44
70	Hardware-accelerated interactive data visualization for neuroscience in Python. Frontiers in Neuroinformatics, 2013, 7, 36.	1.3	40
71	Neural correlates of blood flow measured by ultrasound. Neuron, 2022, 110, 1631-1640.e4.	3.8	40
72	Spatial modulation of visual responses arises in cortex with active navigation. ELife, 2021, 10, .	2.8	32

#	Article	IF	CITATIONS
73	Firing rate modulation: A simple statistical view of memory trace reactivation. Neural Networks, 2005, 18, 1280-1291.	3.3	31
74	Experimental modelling of time-of-flight sonar. Robotics and Autonomous Systems, 1998, 24, 33-42.	3.0	24
75	Dopamine Axons in Dorsal Striatum Encode Contralateral Visual Stimuli and Choices. Journal of Neuroscience, 2021, 41, 7197-7205.	1.7	24
76	Rigbox: An Open-Source Toolbox for Probing Neurons and Behavior. ENeuro, 2020, 7, ENEURO.0406-19.2020.	0.9	19
77	The Convallis Rule for Unsupervised Learning in Cortical Networks. PLoS Computational Biology, 2013, 9, e1003272.	1.5	17
78	Hippocampal CA1 Somatostatin Interneurons Originate in the Embryonic MGE/POA. Stem Cell Reports, 2019, 13, 793-802.	2.3	15
79	Cortical computation in mammals and birds. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3184-3185.	3.3	14
80	Valuations for Spike Train Prediction. Neural Computation, 2008, 20, 644-667.	1.3	12
81	Cell Assemblies of the Superficial Cortex. Neuron, 2012, 76, 263-265.	3.8	11
82	Top-Down Control of Cortical State. Neuron, 2013, 79, 408-410.	3.8	11
83	Synaptic scaling in sleep. Science, 2017, 355, 457-457.	6.0	8
84	Disruption of VGLUT1 in Cholinergic Medial Habenula Projections Increases Nicotine Self-Administration. ENeuro, 2022, 9, ENEURO.0481-21.2021.	0.9	7
85	Absolute localization for a mobile robot using place cells. Robotics and Autonomous Systems, 1997, 22, 393-406.	3.0	3
86	Hallucinations and nonsensory correlates of neural activity. Behavioral and Brain Sciences, 2004, 27, 796-796.	0.4	3
87	Sleep replay meets brain–machine interface. Nature Neuroscience, 2014, 17, 1019-1021.	7.1	3
88	Supervised learning with decision margins in pools of spiking neurons. Journal of Computational Neuroscience, 2014, 37, 333-344.	0.6	3