Joseph Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4751870/publications.pdf

Version: 2024-02-01

		369	1136
358	59,501	135	230
papers	citations	h-index	g-index
370	370	370	32928
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Electrochemical Glucose Biosensors. Chemical Reviews, 2008, 108, 814-825.	23.0	2,985
2	Carbon-Nanotube Based Electrochemical Biosensors: A Review. Electroanalysis, 2005, 17, 7-14.	1.5	2,181
3	Wearable biosensors for healthcare monitoring. Nature Biotechnology, 2019, 37, 389-406.	9.4	1,895
4	Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosensors and Bioelectronics, 2006, 21, 1887-1892.	5.3	1,168
5	Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Science Robotics, 2017, 2, .	9.9	1,018
6	Non-invasive wearable electrochemical sensors: a review. Trends in Biotechnology, 2014, 32, 363-371.	4.9	943
7	Wearable sensors: modalities, challenges, and prospects. Lab on A Chip, 2018, 18, 217-248.	3.1	778
8	Electrochemical Tattoo Biosensors for Real-Time Noninvasive Lactate Monitoring in Human Perspiration. Analytical Chemistry, 2013, 85, 6553-6560.	3.2	686
9	Glucose Biosensors: 40 Years of Advances and Challenges. Electroanalysis, 2001, 13, 983-988.	1.5	661
10	A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nature Communications, 2016, 7, 11650.	5.8	639
11	Wearable Chemical Sensors: Present Challenges and Future Prospects. ACS Sensors, 2016, 1, 464-482.	4.0	596
12	Wearable Electrochemical Sensors and Biosensors: A Review. Electroanalysis, 2013, 25, 29-46.	1.5	568
13	Nano/Microscale Motors: Biomedical Opportunities and Challenges. ACS Nano, 2012, 6, 5745-5751.	7.3	565
14	Tattoo-Based Noninvasive Glucose Monitoring: A Proof-of-Concept Study. Analytical Chemistry, 2015, 87, 394-398.	3.2	562
15	Stripping Analysis at Bismuth Electrodes: A Review. Electroanalysis, 2005, 17, 1341-1346.	1.5	529
16	Highly Efficient Catalytic Microengines: Template Electrosynthesis of Polyaniline/Platinum Microtubes. Journal of the American Chemical Society, 2011, 133, 11862-11864.	6.6	492
17	The Environmental Impact of Micro/Nanomachines: A Review. ACS Nano, 2014, 8, 3170-3180.	7.3	490
18	Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosensors and Bioelectronics, 2015, 74, 1061-1068.	5.3	471

#	Article	IF	CITATIONS
19	Noninvasive Alcohol Monitoring Using a Wearable Tattoo-Based Iontophoretic-Biosensing System. ACS Sensors, 2016, 1, 1011-1019.	4.0	460
20	Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chemical Society Reviews, 2020, 49, 7671-7709.	18.7	460
21	Artificial Micromotors in the Mouse's Stomach: A Step toward <i>in Vivo</i> Use of Synthetic Motors. ACS Nano, 2015, 9, 117-123.	7.3	435
22	Wearable non-invasive epidermal glucose sensors: A review. Talanta, 2018, 177, 163-170.	2.9	432
23	Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nature Communications, 2017, 8, 272.	5.8	424
24	Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosensors and Bioelectronics, 2014, 54, 603-609.	5.3	403
25	Can Man-Made Nanomachines Compete with Nature Biomotors?. ACS Nano, 2009, 3, 4-9.	7.3	400
26	Cargoâ€Towing Fuelâ€Free Magnetic Nanoswimmers for Targeted Drug Delivery. Small, 2012, 8, 460-467.	5.2	393
27	Functionalized Ultrasound-Propelled Magnetically Guided Nanomotors: Toward Practical Biomedical Applications. ACS Nano, 2013, 7, 9232-9240.	7.3	386
28	Micromachineâ€Enabled Capture and Isolation of Cancer Cells in Complex Media. Angewandte Chemie - International Edition, 2011, 50, 4161-4164.	7.2	381
29	Superhydrophobic Alkanethiol-Coated Microsubmarines for Effective Removal of Oil. ACS Nano, 2012, 6, 4445-4451.	7.3	371
30	Simultaneous Monitoring of Sweat and Interstitial Fluid Using a Single Wearable Biosensor Platform. Advanced Science, 2018, 5, 1800880.	5.6	371
31	Synthetic micro/nanomotors in drug delivery. Nanoscale, 2014, 6, 10486-10494.	2.8	367
32	Magnetically Powered Flexible Metal Nanowire Motors. Journal of the American Chemical Society, 2010, 132, 14403-14405.	6.6	362
33	Advanced Materials for Printed Wearable Electrochemical Devices: A Review. Advanced Electronic Materials, 2017, 3, 1600260.	2.6	358
34	Hydrogen-Bubble-Propelled Zinc-Based Microrockets in Strongly Acidic Media. Journal of the American Chemical Society, 2012, 134, 897-900.	6.6	351
35	Carbon-Nanotube-Induced Acceleration of Catalytic Nanomotors. ACS Nano, 2008, 2, 1069-1075.	7.3	337
36	Seawater-driven magnesium based Janus micromotors for environmental remediation. Nanoscale, 2013, 5, 4696.	2.8	333

#	Article	IF	Citations
37	Water-Driven Micromotors. ACS Nano, 2012, 6, 8432-8438.	7.3	326
38	Epidermal Microfluidic Electrochemical Detection System: Enhanced Sweat Sampling and Metabolite Detection. ACS Sensors, 2017, 2, 1860-1868.	4.0	325
39	Water-Driven Micromotors for Rapid Photocatalytic Degradation of Biological and Chemical Warfare Agents. ACS Nano, 2014, 8, 11118-11125.	7.3	316
40	Bioinspired Helical Microswimmers Based on Vascular Plants. Nano Letters, 2014, 14, 305-310.	4. 5	315
41	Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat. Energy and Environmental Science, 2017, 10, 1581-1589.	15.6	309
42	An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nature Biomedical Engineering, 2021, 5, 737-748.	11.6	309
43	Micro- and Nanomotors as Active Environmental Microcleaners and Sensors. Journal of the American Chemical Society, 2018, 140, 9317-9331.	6.6	307
44	Bacterial Isolation by Lectin-Modified Microengines. Nano Letters, 2012, 12, 396-401.	4. 5	300
45	Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst, The, 2013, 138, 123-128.	1.7	300
46	Catalytic Iridium-Based Janus Micromotors Powered by Ultralow Levels of Chemical Fuels. Journal of the American Chemical Society, 2014, 136, 2276-2279.	6.6	300
47	Wearable thermoelectrics for personalized thermoregulation. Science Advances, 2019, 5, eaaw0536.	4.7	299
48	Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst, The, 2014, 139, 1632-1636.	1.7	292
49	Synthetic Nanomotors in Microchannel Networks: Directional Microchip Motion and Controlled Manipulation of Cargo. Journal of the American Chemical Society, 2008, 130, 8164-8165.	6.6	289
50	Acoustic Droplet Vaporization and Propulsion of Perfluorocarbonâ€Loaded Microbullets for Targeted Tissue Penetration and Deformation. Angewandte Chemie - International Edition, 2012, 51, 7519-7522.	7.2	277
51	Motion-based DNA detection using catalytic nanomotors. Nature Communications, 2010, 1, 36.	5 . 8	276
52	Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability. Nano Letters, 2016, 16, 721-727.	4.5	276
53	A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst, The, 2013, 138, 7031.	1.7	274
54	A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration. Biosensors and Bioelectronics, 2017, 91, 885-891.	5 . 3	274

#	Article	IF	CITATIONS
55	Epidermal Biofuel Cells: Energy Harvesting from Human Perspiration. Angewandte Chemie - International Edition, 2013, 52, 7233-7236.	7.2	271
56	Single Cell Real-Time miRNAs Sensing Based on Nanomotors. ACS Nano, 2015, 9, 6756-6764.	7.3	267
57	Tattooâ€Based Wearable Electrochemical Devices: A Review. Electroanalysis, 2015, 27, 562-572.	1.5	265
58	Chemical Sensing Based on Catalytic Nanomotors: Motion-Based Detection of Trace Silver. Journal of the American Chemical Society, 2009, 131, 12082-12083.	6.6	264
59	Wearable Flexible and Stretchable Glove Biosensor for On-Site Detection of Organophosphorus Chemical Threats. ACS Sensors, 2017, 2, 553-561.	4.0	260
60	Self-Propelled Activated Carbon Janus Micromotors for Efficient Water Purification. Small, 2015, 11, 499-506.	5.2	259
61	Reversible Swarming and Separation of Self-Propelled Chemically Powered Nanomotors under Acoustic Fields. Journal of the American Chemical Society, 2015, 137, 2163-2166.	6.6	258
62	Stretchable biofuel cells as wearable textile-based self-powered sensors. Journal of Materials Chemistry A, 2016, 4, 18342-18353.	5.2	258
63	Acoustically Propelled Nanomotors for Intracellular siRNA Delivery. ACS Nano, 2016, 10, 4997-5005.	7.3	257
64	3Dâ€Printed Artificial Microfish. Advanced Materials, 2015, 27, 4411-4417.	11.1	251
65	Turning Erythrocytes into Functional Micromotors. ACS Nano, 2014, 8, 12041-12048.	7.3	247
66	Lightâ€6teered Isotropic Semiconductor Micromotors. Advanced Materials, 2017, 29, 1603374.	11.1	246
67	Rapid Delivery of Drug Carriers Propelled and Navigated by Catalytic Nanoshuttles. Small, 2010, 6, 2741-2747.	5.2	245
68	Smart bandage with wireless connectivity for uric acid biosensing as an indicator of wound status. Electrochemistry Communications, 2015, 56, 6-10.	2.3	244
69	Rocket Science at the Nanoscale. ACS Nano, 2016, 10, 5619-5634.	7.3	241
70	Bandageâ€Based Wearable Potentiometric Sensor for Monitoring Wound pH. Electroanalysis, 2014, 26, 1345-1353.	1.5	240
71	Magneto–Acoustic Hybrid Nanomotor. Nano Letters, 2015, 15, 4814-4821.	4.5	239
72	Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Science Robotics, 2020, 5, .	9.9	236

#	Article	IF	Citations
73	Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs. ACS Sensors, 2020, 5, 2679-2700.	4.0	227
74	Artificial Enzyme-Powered Microfish for Water-Quality Testing. ACS Nano, 2013, 7, 818-824.	7. 3	226
75	Motion Control at the Nanoscale. Small, 2010, 6, 338-345.	5.2	221
76	Functionalized Micromachines for Selective and Rapid Isolation of Nucleic Acid Targets from Complex Samples. Nano Letters, 2011, 11, 2083-2087.	4.5	216
77	Wearable Bioelectronics: Enzyme-Based Body-Worn Electronic Devices. Accounts of Chemical Research, 2018, 51, 2820-2828.	7.6	214
78	Cellâ€Membraneâ€Coated Synthetic Nanomotors for Effective Biodetoxification. Advanced Functional Materials, 2015, 25, 3881-3887.	7.8	212
79	Allâ€Printed, Stretchable Znâ€Ag ₂ O Rechargeable Battery via Hyperelastic Binder for Selfâ€Powering Wearable Electronics. Advanced Energy Materials, 2017, 7, 1602096.	10.2	212
80	Enteric Micromotor Can Selectively Position and Spontaneously Propel in the Gastrointestinal Tract. ACS Nano, 2016, 10, 9536-9542.	7.3	211
81	Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab on A Chip, 2017, 17, 1834-1842.	3.1	211
82	Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosensors and Bioelectronics, 2017, 91, 574-579.	5.3	201
83	Smart Materials for Microrobots. Chemical Reviews, 2022, 122, 5365-5403.	23.0	201
84	3D steerable, acoustically powered microswimmers for single-particle manipulation. Science Advances, 2019, 5, eaax3084.	4.7	199
85	Magnetically Propelled Fishâ€Like Nanoswimmers. Small, 2016, 12, 6098-6105.	5.2	198
86	Ultrasoundâ€Propelled Nanoporous Gold Wire for Efficient Drug Loading and Release. Small, 2014, 10, 4154-4159.	5.2	196
87	A Textileâ€Based Stretchable Multiâ€Ion Potentiometric Sensor. Advanced Healthcare Materials, 2016, 5, 996-1001.	3.9	196
88	Sweat-based wearable energy harvesting-storage hybrid textile devices. Energy and Environmental Science, 2018, 11, 3431-3442.	15.6	196
89	Wearable Electrochemical Microneedle Sensor for Continuous Monitoring of Levodopa: Toward Parkinson Management. ACS Sensors, 2019, 4, 2196-2204.	4.0	196
90	High-speed propulsion of flexible nanowire motors: Theory and experiments. Soft Matter, 2011, 7, 8169.	1.2	195

#	Article	IF	Citations
91	Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat. Electrochemistry Communications, 2015, 51, 41-45.	2.3	193
92	Portable electrochemical systems. TrAC - Trends in Analytical Chemistry, 2002, 21, 226-232.	5.8	192
93	Hybrid biomembrane–functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Science Robotics, 2018, 3, .	9.9	190
94	Organized Self-Assembly of Janus Micromotors with Hydrophobic Hemispheres. Journal of the American Chemical Society, 2013, 135, 998-1001.	6.6	189
95	Active Intracellular Delivery of a Cas9/sgRNA Complex Using Ultrasoundâ€Propelled Nanomotors. Angewandte Chemie - International Edition, 2018, 57, 2657-2661.	7.2	187
96	Micromotors for environmental applications: a review. Environmental Science: Nano, 2018, 5, 1530-1544.	2.2	187
97	An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nature Biomedical Engineering, 2022, 6, 1214-1224.	11.6	186
98	Multiâ€Fuel Driven Janus Micromotors. Small, 2013, 9, 467-471.	5.2	184
99	Micromotorâ€Based Highâ€Yielding Fast Oxidative Detoxification of Chemical Threats. Angewandte Chemie - International Edition, 2013, 52, 13276-13279.	7.2	184
100	Highly Efficient Freestyle Magnetic Nanoswimmer. Nano Letters, 2017, 17, 5092-5098.	4.5	182
101	Eyeglasses-based tear biosensing system: Non-invasive detection of alcohol, vitamins and glucose. Biosensors and Bioelectronics, 2019, 137, 161-170.	5.3	180
102	Ultrasound-Modulated Bubble Propulsion of Chemically Powered Microengines. Journal of the American Chemical Society, 2014, 136, 8552-8555.	6.6	177
103	Micromotors Spontaneously Neutralize Gastric Acid for pHâ€Responsive Payload Release. Angewandte Chemie - International Edition, 2017, 56, 2156-2161.	7.2	175
104	Amperometric Thick-Film Strip Electrodes for Monitoring Organophosphate Nerve Agents Based on Immobilized Organophosphorus Hydrolase. Analytical Chemistry, 1999, 71, 2246-2249.	3.2	172
105	Allâ€Printed Stretchable Electrochemical Devices. Advanced Materials, 2015, 27, 3060-3065.	11.1	172
106	Wearable Wireless Tyrosinase Bandage and Microneedle Sensors: Toward Melanoma Screening. Advanced Healthcare Materials, 2018, 7, e1701264.	3.9	170
107	Superfast Nearâ€Infrared Lightâ€Driven Polymer Multilayer Rockets. Small, 2016, 12, 577-582.	5.2	168
108	Highly Selective Membrane-Free, Mediator-Free Glucose Biosensor. Analytical Chemistry, 1994, 66, 3600-3603.	3.2	167

#	Article	IF	CITATIONS
109	Micromotors for "Chemistry-on-the-Fly― Journal of the American Chemical Society, 2018, 140, 3810-3820.	6.6	167
110	Wearable electrochemical biosensors in North America. Biosensors and Bioelectronics, 2021, 172, 112750.	5.3	167
111	A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nature Communications, 2021, 12, 1542.	5.8	164
112	Epidermal Enzymatic Biosensors for Sweat Vitamin C: Toward Personalized Nutrition. ACS Sensors, 2020, 5, 1804-1813.	4.0	163
113	Mixed plant tissue carbon paste bioelectrode. Analytical Chemistry, 1988, 60, 1545-1548.	3.2	160
114	Builtâ€In Active Microneedle Patch with Enhanced Autonomous Drug Delivery. Advanced Materials, 2020, 32, e1905740.	11.1	160
115	Nanomotor-Enabled pH-Responsive Intracellular Delivery of Caspase-3: Toward Rapid Cell Apoptosis. ACS Nano, 2017, 11, 5367-5374.	7.3	159
116	Batch injection analysis. Analytical Chemistry, 1991, 63, 1053-1056.	3.2	156
117	Wearable textile biofuel cells for powering electronics. Journal of Materials Chemistry A, 2014, 2, 18184-18189.	5.2	156
118	Microneedle-Based Detection of Ketone Bodies along with Glucose and Lactate: Toward Real-Time Continuous Interstitial Fluid Monitoring of Diabetic Ketosis and Ketoacidosis. Analytical Chemistry, 2020, 92, 2291-2300.	3.2	154
119	Biomimetic Micromotor Enables Active Delivery of Antigens for Oral Vaccination. Nano Letters, 2019, 19, 1914-1921.	4.5	152
120	Electrochemical sensing based on printable temporary transfer tattoos. Chemical Communications, 2012, 48, 6794.	2.2	150
121	Polymer-based tubular microbots: role of composition and preparation. Nanoscale, 2012, 4, 2447.	2.8	150
122	Microneedle-based self-powered glucose sensor. Electrochemistry Communications, 2014, 47, 58-62.	2.3	150
123	Biofuel Cells for Selfâ€Powered Electrochemical Biosensing and Logic Biosensing: A Review. Electroanalysis, 2012, 24, 197-209.	1.5	149
124	RBC micromotors carrying multiple cargos towards potential theranostic applications. Nanoscale, 2015, 7, 13680-13686.	2.8	149
125	Wearable Biofuel Cells: A Review. Electroanalysis, 2016, 28, 1188-1200.	1.5	149
126	Waterâ€Powered Cellâ€Mimicking Janus Micromotor. Advanced Functional Materials, 2015, 25, 7497-7501.	7.8	147

#	Article	IF	Citations
127	Electrochemical Detection for Capillary Electrophoresis Microchips: A Review. Electroanalysis, 2005, 17, 1133-1140.	1.5	146
128	V-Type Nerve Agent Detection Using a Carbon Nanotube-Based Amperometric Enzyme Electrode. Analytical Chemistry, 2006, 78, 331-336.	3.2	146
129	Micromotor-based lab-on-chip immunoassays. Nanoscale, 2013, 5, 1325-1331.	2.8	146
130	Motion-driven sensing and biosensing using electrochemically propelled nanomotors. Analyst, The, 2011, 136, 4621.	1.7	144
131	Fantastic Voyage of Nanomotors into the Cell. ACS Nano, 2020, 14, 9423-9439.	7.3	144
132	Propulsion of nanowire diodes. Chemical Communications, 2010, 46, 1623.	2.2	143
133	Nanomotor lithography. Nature Communications, 2014, 5, 5026.	5.8	141
134	Lysozyme-Based Antibacterial Nanomotors. ACS Nano, 2015, 9, 9252-9259.	7.3	141
135	Lab under the Skin: Microneedle Based Wearable Devices. Advanced Healthcare Materials, 2021, 10, e2002255.	3.9	141
136	A Selfâ€Powered "Senseâ€Actâ€Treat―System that is Based on a Biofuel Cell and Controlled by Boolean Logic. Angewandte Chemie - International Edition, 2012, 51, 2686-2689.	7.2	139
137	Biomimetic Plateletâ€Camouflaged Nanorobots for Binding and Isolation of Biological Threats. Advanced Materials, 2018, 30, 1704800.	11.1	139
138	Template electrosynthesis of tailored-made helical nanoswimmers. Nanoscale, 2014, 6, 9415-9420.	2.8	138
139	Cargo-towing synthetic nanomachines: Towards active transport in microchip devices. Lab on A Chip, 2012, 12, 1944.	3.1	137
140	Bubble-Propelled Micromotors for Enhanced Transport of Passive Tracers. Langmuir, 2014, 30, 5082-5087.	1.6	136
141	Wearable Chemical Sensors: Emerging Systems for On-Body Analytical Chemistry. Analytical Chemistry, 2020, 92, 378-396.	3.2	136
142	Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl. Sensors and Actuators B: Chemical, 2019, 296, 126422.	4.0	134
143	Onâ∈Body Bioelectronics: Wearable Biofuel Cells for Bioenergy Harvesting and Selfâ∈Powered Biosensing. Advanced Functional Materials, 2020, 30, 1906243.	7.8	134
144	Hybrid Nanomotor: A Catalytically/Magnetically Powered Adaptive Nanowire Swimmer. Small, 2011, 7, 2047-2051.	5.2	132

#	Article	IF	CITATIONS
145	Magnesiumâ€Based Micromotors: Waterâ€Powered Propulsion, Multifunctionality, and Biomedical and Environmental Applications. Small, 2018, 14, e1704252.	5.2	132
146	Stretchable and Flexible Buckypaperâ€Based Lactate Biofuel Cell for Wearable Electronics. Advanced Functional Materials, 2019, 29, 1905785.	7.8	132
147	Microneedle array-based carbon paste amperometric sensors and biosensors. Analyst, The, 2011, 136, 1846.	1.7	130
148	Zwitterionic poly(carboxybetaine) hydrogels for glucose biosensors in complex media. Biosensors and Bioelectronics, 2011, 26, 2454-2459.	5.3	130
149	An epidermal alkaline rechargeable Ag–Zn printable tattoo battery for wearable electronics. Journal of Materials Chemistry A, 2014, 2, 15788-15795.	5.2	130
150	Continuous Opioid Monitoring along with Nerve Agents on a Wearable Microneedle Sensor Array. Journal of the American Chemical Society, 2020, 142, 5991-5995.	6.6	130
151	Cell-Like Micromotors. Accounts of Chemical Research, 2018, 51, 1901-1910.	7.6	128
152	Chitosan-based water-propelled micromotors with strong antibacterial activity. Nanoscale, 2017, 9, 2195-2200.	2.8	127
153	Touchâ€Based Stressless Cortisol Sensing. Advanced Materials, 2021, 33, e2008465.	11.1	127
154	Self-Propelled Carbohydrate-Sensitive Microtransporters with Built-In Boronic Acid Recognition for Isolating Sugars and Cells. Journal of the American Chemical Society, 2012, 134, 15217-15220.	6.6	125
155	Targeting and isolation of cancer cells using micro/nanomotors. Advanced Drug Delivery Reviews, 2018, 125, 94-101.	6.6	125
156	Self-Propelled Nanomotors Autonomously Seek and Repair Cracks. Nano Letters, 2015, 15, 7077-7085.	4.5	123
157	Dynamic Isolation and Unloading of Target Proteins by Aptamer-Modified Microtransporters. Analytical Chemistry, 2011, 83, 7962-7969.	3.2	122
158	Pacifier Biosensor: Toward Noninvasive Saliva Biomarker Monitoring. Analytical Chemistry, 2019, 91, 13883-13891.	3.2	122
159	Aptamer-Modified Graphene-Based Catalytic Micromotors: Off–On Fluorescent Detection of Ricin. ACS Sensors, 2016, 1, 217-221.	4.0	121
160	Multifunctional Silverâ€Exchanged Zeolite Micromotors for Catalytic Detoxification of Chemical and Biological Threats. Advanced Functional Materials, 2015, 25, 2147-2155.	7.8	117
161	Self-propelled affinity biosensors: Moving the receptor around the sample. Biosensors and Bioelectronics, 2016, 76, 234-242.	5.3	114
162	Wearable electrochemical sensors for in situ analysis in marine environments. Analyst, The, 2011, 136, 2912.	1.7	112

#	Article	IF	CITATIONS
163	Oxygen-Rich Oxidase Enzyme Electrodes for Operation in Oxygen-Free Solutions. Journal of the American Chemical Society, 1998, 120, 1048-1050.	6.6	109
164	Transient Micromotors That Disappear When No Longer Needed. ACS Nano, 2016, 10, 10389-10396.	7.3	109
165	Vertically Aligned Gold Nanowires as Stretchable and Wearable Epidermal Ion-Selective Electrode for Noninvasive Multiplexed Sweat Analysis. Analytical Chemistry, 2020, 92, 4647-4655.	3.2	108
166	Multiplexed microneedle-based biosensor array for characterization of metabolic acidosis. Talanta, 2012, 88, 739-742.	2.9	107
167	Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments. ACS Nano, 2017, 11, 9268-9275.	7.3	107
168	Micromotors Go In Vivo: From Test Tubes to Live Animals. Advanced Functional Materials, 2018, 28, 1705640.	7.8	106
169	Enzymatic/Immunoassay Dualâ€Biomarker Sensing Chip: Towards Decentralized Insulin/Glucose Detection. Angewandte Chemie - International Edition, 2019, 58, 6376-6379.	7.2	106
170	Wearable and Mobile Sensors for Personalized Nutrition. ACS Sensors, 2021, 6, 1745-1760.	4.0	106
171	Thermal Modulation of Nanomotor Movement. Small, 2009, 5, 1569-1574.	5. 2	105
172	Nano/microvehicles for efficient delivery and (bio)sensing at the cellular level. Chemical Science, 2017, 8, 6750-6763.	3.7	104
173	Micromotor Pills as a Dynamic Oral Delivery Platform. ACS Nano, 2018, 12, 8397-8405.	7.3	104
174	Touch-Based Fingertip Blood-Free Reliable Glucose Monitoring: Personalized Data Processing for Predicting Blood Glucose Concentrations. ACS Sensors, 2021, 6, 1875-1883.	4.0	104
175	Chemically Triggered Swarming of Gold Microparticles. Angewandte Chemie - International Edition, 2011, 50, 503-506.	7.2	102
176	Electrochemical fingerprint of street samples for fast on-site screening of cocaine in seized drug powders. Chemical Science, 2016, 7, 2364-2370.	3.7	102
177	All-printed magnetically self-healing electrochemical devices. Science Advances, 2016, 2, e1601465.	4.7	101
178	Wearable electrochemical alcohol biosensors. Current Opinion in Electrochemistry, 2018, 10, 126-135.	2.5	101
179	High-Performance Screen-Printed Thermoelectric Films on Fabrics. Scientific Reports, 2017, 7, 7317.	1.6	100
180	Sensitive and stable amperometric measurements at ionic liquid–carbon paste microelectrodes. Analytica Chimica Acta, 2008, 606, 45-49.	2.6	99

#	Article	IF	CITATIONS
181	Bicomponent Microneedle Array Biosensor for Minimallyâ€Invasive Glutamate Monitoring. Electroanalysis, 2011, 23, 2302-2309.	1.5	99
182	On-Chip Integration of Enzyme and Immunoassays:Â Simultaneous Measurements of Insulin and Glucose. Journal of the American Chemical Society, 2003, 125, 8444-8445.	6.6	98
183	Chemotactic Guidance of Synthetic Organic/Inorganic Payloads Functionalized Sperm Micromotors. Advanced Biology, 2018, 2, 1700160.	3.0	98
184	Remote Biosensor for In-Situ MOnitoring of Organophosphate Nerve Agents. Electroanalysis, 1999, 11, 866-869.	1.5	97
185	Lighting up micromotors with quantum dots for smart chemical sensing. Chemical Communications, 2015, 51, 14088-14091.	2.2	97
186	Metal–Organic Frameworks as Micromotors with Tunable Engines and Brakes. Journal of the American Chemical Society, 2017, 139, 611-614.	6.6	96
187	Nano/micromotors for security/defense applications. A review. Nanoscale, 2015, 7, 19377-19389.	2.8	95
188	Liquid Metal Based Islandâ€Bridge Architectures for All Printed Stretchable Electrochemical Devices. Advanced Functional Materials, 2020, 30, 2002041.	7.8	95
189	Simultaneous detection of salivary î"9-tetrahydrocannabinol and alcohol using a Wearable Electrochemical Ring Sensor. Talanta, 2020, 211, 120757.	2.9	95
190	Thermal Stabilization of Enzymes Immobilized within Carbon Paste Electrodes. Analytical Chemistry, 1997, 69, 3124-3127.	3.2	94
191	Swimming Microrobot Optical Nanoscopy. Nano Letters, 2016, 16, 6604-6609.	4.5	93
192	Re-usable electrochemical glucose sensors integrated into a smartphone platform. Biosensors and Bioelectronics, 2018, 101, 181-187.	5.3	93
193	Wearable potentiometric tattoo biosensor for on-body detection of G-type nerve agents simulants. Sensors and Actuators B: Chemical, 2018, 273, 966-972.	4.0	92
194	Acoustic Microcannons: Toward Advanced Microballistics. ACS Nano, 2016, 10, 1522-1528.	7.3	91
195	<i>Enokitake</i> Mushroom-like Standing Gold Nanowires toward Wearable Noninvasive Bimodal Glucose and Strain Sensing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9724-9729.	4.0	91
196	Wearable Ring-Based Sensing Platform for Detecting Chemical Threats. ACS Sensors, 2017, 2, 1531-1538.	4.0	89
197	A passive perspiration biofuel cell: High energy return on investment. Joule, 2021, 5, 1888-1904.	11.7	89
198	A microneedle biosensor for minimally-invasive transdermal detection of nerve agents. Analyst, The, 2017, 142, 918-924.	1.7	86

#	Article	IF	Citations
199	Energy Autonomous Sweatâ€Based Wearable Systems. Advanced Materials, 2021, 33, e2100899.	11.1	85
200	Self-propelled chelation platforms for efficient removal of toxic metals. Environmental Science: Nano, 2016, 3, 559-566.	2.2	82
201	Needle-Type Dual Microsensor for the Simultaneous Monitoring of Glucose and Insulin. Analytical Chemistry, 2001, 73, 844-847.	3.2	81
202	In vivo glucose monitoring: Towards â€~Sense and Act' feedback-loop individualized medical systems. Talanta, 2008, 75, 636-641.	2.9	81
203	Fully Loaded Micromotors for Combinatorial Delivery and Autonomous Release of Cargoes. Small, 2014, 10, 2830-2833.	5.2	81
204	Zirconia/Graphene Oxide Hybrid Micromotors for Selective Capture of Nerve Agents. Chemistry of Materials, 2015, 27, 8162-8169.	3.2	81
205	Acoustically propelled nanoshells. Nanoscale, 2016, 8, 17788-17793.	2.8	81
206	A Nanomotor-Based Active Delivery System for Intracellular Oxygen Transport. ACS Nano, 2019, 13, 11996-12005.	7.3	81
207	Microseparation Chips for Performing Multienzymatic Dehydrogenase/Oxidase Assays: Simultaneous Electrochemical Measurement of Ethanol and Glucose. Analytical Chemistry, 2001, 73, 1296-1300.	3.2	80
208	Multicompartment Tubular Micromotors Toward Enhanced Localized Active Delivery. Advanced Materials, 2020, 32, e2000091.	11.1	80
209	Detection of vapor-phase organophosphate threats using wearable conformable integrated epidermal and textile wireless biosensor systems. Biosensors and Bioelectronics, 2018, 101, 227-234.	5.3	79
210	Structureâ€Dependent Optical Modulation of Propulsion and Collective Behavior of Acoustic/Lightâ€Driven Hybrid Microbowls. Advanced Functional Materials, 2019, 29, 1809003.	7.8	79
211	High Performance Printed AgO-Zn Rechargeable Battery for Flexible Electronics. Joule, 2021, 5, 228-248.	11.7	78
212	Skinâ∈worn Soft Microfluidic Potentiometric Detection System. Electroanalysis, 2019, 31, 239-245.	1.5	77
213	Hybrid Nanovehicles: One Machine, Two Engines. Advanced Functional Materials, 2019, 29, 1806290.	7.8	77
214	Micromotor-based on–off fluorescence detection of sarin and soman simulants. Chemical Communications, 2015, 51, 11190-11193.	2.2	76
215	A Macrophage–Magnesium Hybrid Biomotor: Fabrication and Characterization. Advanced Materials, 2019, 31, e1901828.	11.1	76
216	Enzyme Microelectrode Array Strips for Glucose and Lactate. Analytical Chemistry, 1994, 66, 1007-1011.	3.2	73

#	Article	IF	CITATIONS
217	Flow injection amperometric detection of OP nerve agents based on an organophosphorus–hydrolase biosensor detector. Biosensors and Bioelectronics, 2003, 18, 255-260.	5.3	72
218	Efficient Biocatalytic Degradation of Pollutants by Enzymeâ€Releasing Selfâ€Propelled Motors. Chemistry - A European Journal, 2014, 20, 2866-2871.	1.7	71
219	Merging of Thin―and Thickâ€Film Fabrication Technologies: Toward Soft Stretchable "Island–Bridge― Devices. Advanced Materials Technologies, 2017, 2, 1600284.	3.0	71
220	Electrochemical sensors: From the bench to the skin. Sensors and Actuators B: Chemical, 2021, 344, 130178.	4.0	71
221	Enzymatic/Immunoassay Dualâ€Biomarker Sensing Chip: Towards Decentralized Insulin/Glucose Detection. Angewandte Chemie, 2019, 131, 6442-6445.	1.6	70
222	lonic Liquid-Modified Disposable Electrochemical Sensor Strip for Analysis of Fentanyl. Analytical Chemistry, 2019, 91, 3747-3753.	3.2	70
223	Flexible Rolled Thickâ€Film Miniaturized Flowâ€Cell for Minimally Invasive Amperometric Sensing. Electroanalysis, 2008, 20, 1610-1614.	1.5	68
224	Micromotorâ€Based Energy Generation. Angewandte Chemie - International Edition, 2015, 54, 6896-6899.	7.2	68
225	Microneedle Aptamer-Based Sensors for Continuous, Real-Time Therapeutic Drug Monitoring. Analytical Chemistry, 2022, 94, 8335-8345.	3.2	68
226	Template Electrosynthesis of High-Performance Graphene Microengines. Small, 2015, 11, 3568-3574.	5.2	67
227	Chemical/Lightâ∈Powered Hybrid Micromotors with "Onâ€theâ∈Fly―Optical Brakes. Angewandte Chemie - International Edition, 2018, 57, 8110-8114.	7.2	67
228	Solid-state Forensic Finger sensor for integrated sampling and detection of gunshot residue and explosives: towards †Lab-on-a-finger'. Analyst, The, 2013, 138, 5288.	1.7	66
229	Ultrasound-propelled nanowire motors enhance asparaginase enzymatic activity against cancer cells. Nanoscale, 2017, 9, 18423-18429.	2.8	65
230	Cyclic and Squareâ€Wave Voltammetric Signatures of Nitro ontaining Explosives. Electroanalysis, 2011, 23, 1193-1204.	1.5	61
231	Topographical Manipulation of Microparticles and Cells with Acoustic Microstreaming. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38870-38876.	4.0	60
232	Density Asymmetry Driven Propulsion of Ultrasoundâ€Powered Janus Micromotors. Advanced Functional Materials, 2020, 30, 2004043.	7.8	60
233	Chemical Sensing at the Robot Fingertips: Toward Automated Taste Discrimination in Food Samples. ACS Sensors, 2018, 3, 2375-2384.	4.0	59
234	Delayed Sensor Activation Based on Transient Coatings: Biofouling Protection in Complex Biofluids. Journal of the American Chemical Society, 2018, 140, 14050-14053.	6.6	59

#	Article	IF	CITATIONS
235	Ultrafast Nanocrystals Decorated Micromotors for On-Site Dynamic Chemical Processes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19618-19625.	4.0	58
236	Vertical Gold Nanowires Stretchable Electrochemical Electrodes. Analytical Chemistry, 2018, 90, 13498-13505.	3.2	58
237	A Human Microrobot Interface Based on Acoustic Manipulation. ACS Nano, 2019, 13, 11443-11452.	7.3	58
238	Barcoded metal nanowires. Journal of Materials Chemistry, 2008, 18, 4017.	6.7	57
239	Self-Propelled and Targeted Drug Delivery of Poly(aspartic acid)/Iron–Zinc Microrocket in the Stomach. ACS Nano, 2019, 13, 1324-1332.	7.3	57
240	Structural Innovations in Printed, Flexible, and Stretchable Electronics. Advanced Materials Technologies, 2020, 5, .	3.0	57
241	A 0.3-V CMOS Biofuel-Cell-Powered Wireless Glucose/Lactate Biosensing System. IEEE Journal of Solid-State Circuits, 2018, 53, 3126-3139.	3.5	55
242	Laserâ€Induced Graphene Composites for Printed, Stretchable, and Wearable Electronics. Advanced Materials Technologies, 2019, 4, 1900162.	3.0	55
243	Nanomotors responsive to nerve-agent vapor plumes. Chemical Communications, 2016, 52, 3360-3363.	2.2	54
244	Nanoconfined Atomic Layer Deposition of TiO 2 /Pt Nanotubes: Toward Ultrasmall Highly Efficient Catalytic Nanorockets. Advanced Functional Materials, 2017, 27, 1700598.	7.8	54
245	Bioinspired Chemical Communication between Synthetic Nanomotors. Angewandte Chemie - International Edition, 2018, 57, 241-245.	7.2	54
246	Micromotors for Active Delivery of Minerals toward the Treatment of Iron Deficiency Anemia. Nano Letters, 2019, 19, 7816-7826.	4.5	54
247	Extended Noninvasive Glucose Monitoring in the Interstitial Fluid Using an Epidermal Biosensing Patch. Analytical Chemistry, 2021, 93, 12767-12775.	3.2	54
248	Micromotors to capture and destroy anthrax simulant spores. Analyst, The, 2015, 140, 1421-1427.	1.7	53
249	Finger-Based Printed Sensors Integrated on a Glove for On-Site Screening Of <i>Pseudomonas aeruginosa</i> Virulence Factors. Analytical Chemistry, 2018, 90, 7761-7768.	3.2	53
250	Microengine-assisted electrochemical measurements at printable sensor strips. Chemical Communications, 2015, 51, 8668-8671.	2.2	52
251	Fish-Scale-Like Intercalated Metal Oxide-Based Micromotors as Efficient Water Remediation Agents. ACS Applied Materials & Diterfaces, 2019, 11, 16164-16173.	4.0	52
252	DNAzyme logic-controlled biofuel cells for self-powered biosensors. Chemical Communications, 2012, 48, 3815.	2.2	50

#	Article	IF	Citations
253	Biomedical nanomotors: efficient glucose-mediated insulin release. Nanoscale, 2017, 9, 14307-14311.	2.8	49
254	Point-of-use robotic sensors for simultaneous pressure detection and chemical analysis. Materials Horizons, 2019, 6, 604-611.	6.4	49
255	Trivalent Subunit Vaccine Candidates for COVID-19 and Their Delivery Devices. Journal of the American Chemical Society, 2021, 143, 14748-14765.	6.6	48
256	Designing wearable microgrids: towards autonomous sustainable on-body energy management. Energy and Environmental Science, 2022, 15, 82-101.	15.6	48
257	Localized plasmonic structured illumination microscopy with an optically trapped microlens. Nanoscale, 2017, 9, 14907-14912.	2.8	47
258	Noninvasive Transdermal Delivery System of Lidocaine Using an Acoustic Dropletâ€Vaporization Based Wearable Patch. Small, 2018, 14, e1803266.	5.2	47
259	Wearable Biosupercapacitor: Harvesting and Storing Energy from Sweat. Advanced Functional Materials, 2021, 31, 2102915.	7.8	47
260	A wearable fingernail chemical sensing platform: pH sensing at your fingertips. Talanta, 2016, 150, 622-628.	2.9	46
261	Effective removal of inorganic and organic heavy metal pollutants with poly(amino acid)-based micromotors. Nanoscale, 2020, 12, 5227-5232.	2.8	45
262	Micromotor-Based Biomimetic Carbon Dioxide Sequestration: Towards Mobile Microscrubbers. Angewandte Chemie - International Edition, 2015, 54, 12900-12904.	7.2	44
263	Selfâ€Healing Inks for Autonomous Repair of Printable Electrochemical Devices. Advanced Electronic Materials, 2015, 1, 1500289.	2.6	43
264	Sensing at Your Fingertips: Gloveâ€based Wearable Chemical Sensors. Electroanalysis, 2019, 31, 428-436.	1.5	43
265	Cavitas electrochemical sensor toward detection of N-epsilon (carboxymethyl)lysine in oral cavity. Sensors and Actuators B: Chemical, 2019, 281, 399-407.	4.0	43
266	Multiplexed and switchable release of distinct fluids from microneedle platforms via conducting polymer nanoactuators for potential drug delivery. Sensors and Actuators B: Chemical, 2012, 161, 1018-1024.	4.0	42
267	Electrochemical Detection of Gunshot Residue for Forensic Analysis: A Review. Electroanalysis, 2013, 25, 1341-1358.	1.5	42
268	ACE2 Receptor-Modified Algae-Based Microrobot for Removal of SARS-CoV-2 in Wastewater. Journal of the American Chemical Society, 2021, 143, 12194-12201.	6.6	42
269	Biomembraneâ€Functionalized Micromotors: Biocompatible Active Devices for Diverse Biomedical Applications. Advanced Materials, 2022, 34, e2107177.	11.1	41
270	Simultaneous microchip enzymatic measurements of blood lactate and glucose. Analytica Chimica Acta, 2007, 585, 11-16.	2.6	40

#	Article	IF	CITATIONS
271	Dual-enzyme natural motors incorporating decontamination and propulsion capabilities. RSC Advances, 2014, 4, 27565-27570.	1.7	40
272	Vapor-Driven Propulsion of Catalytic Micromotors. Scientific Reports, 2015, 5, 13226.	1.6	40
273	Edible Electrochemistry: Food Materials Based Electrochemical Sensors. Advanced Healthcare Materials, 2017, 6, 1700770.	3.9	40
274	Simultaneous cortisol/insulin microchip detection using dual enzyme tagging. Biosensors and Bioelectronics, 2020, 167, 112512.	5. 3	40
275	Active Delivery of VLPs Promotes Antiâ€Tumor Activity in a Mouse Ovarian Tumor Model. Small, 2020, 16, e1907150.	5.2	40
276	Wearable soft electrochemical microfluidic device integrated with iontophoresis for sweat biosensing. Analytical and Bioanalytical Chemistry, 2022, 414, 5411-5421.	1.9	39
277	Rapid Detection of AlB1 in Breast Cancer Cells Based on Aptamerâ€Functionalized Nanomotors. ChemPhysChem, 2019, 20, 3177-3180.	1.0	38
278	Ultrafast Growth and Locomotion of Dandelion‣ike Microswarms with Tubular Micromotors. Small, 2020, 16, e2003678.	5.2	38
279	Physical Disruption of Solid Tumors by Immunostimulatory Microrobots Enhances Antitumor Immunity. Advanced Materials, 2021, 33, e2103505.	11.1	38
280	Motile Micropump Based on Synthetic Micromotors for Dynamic Micropatterning. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28507-28514.	4.0	37
281	Rotibot: Use of Rotifers as Selfâ€Propelling Biohybrid Microcleaners. Advanced Functional Materials, 2019, 29, 1900658.	7.8	37
282	Direct electrochemical biosensing in gastrointestinal fluids. Analytical and Bioanalytical Chemistry, 2019, 411, 4597-4604.	1.9	37
283	Microscale Biosensor Array Based on Flexible Polymeric Platform toward Lab-on-a-Needle: Real-Time Multiparameter Biomedical Assays on Curved Needle Surfaces. ACS Sensors, 2020, 5, 1363-1373.	4.0	37
284	Acoustic Nanomotors for Detection of Human Papillomavirus–Associated Head and Neck Cancer. Otolaryngology - Head and Neck Surgery, 2019, 161, 814-822.	1.1	36
285	Nonâ€Invasive Sweatâ€Based Tracking of Lâ€Dopa Pharmacokinetic Profiles Following an Oral Tablet Administration. Angewandte Chemie - International Edition, 2021, 60, 19074-19078.	7.2	36
286	Highly Stable Battery Pack via Insulated, Reinforced, Bucklingâ€Enabled Interconnect Array. Small, 2018, 14, e1800938.	5.2	35
287	Parallel Labelâ€Free Isolation of Cancer Cells Using Arrays of Acoustic Microstreaming Traps. Advanced Materials Technologies, 2019, 4, 1800374.	3.0	35
288	Simultaneous electrochemical measurement of metal and organic propellant constituents of gunshot residues. Analyst, The, 2012, 137, 3265.	1.7	34

#	Article	IF	CITATIONS
289	Chemical/Lightâ€Powered Hybrid Micromotors with "Onâ€theâ€Fly―Optical Brakes. Angewandte Chemie, 2018, 130, 8242-8246.	1.6	34
290	Intrinsically Stretchable Fuel Cell Based on Enokitakeâ€Like Standing Gold Nanowires. Advanced Energy Materials, 2020, 10, 1903512.	10.2	34
291	Active Microneedle Administration of Plant Virus Nanoparticles for Cancer In Situ Vaccination Improves Immunotherapeutic Efficacy. ACS Applied Nano Materials, 2020, 3, 8037-8051.	2.4	34
292	"Swipe and Scan― Integration of sampling and analysis of gunshot metal residues at screen-printed electrodes. Electrochemistry Communications, 2012, 23, 52-55.	2.3	33
293	Nanomotor-based biocatalytic patterning of helical metal microstructures. Nanoscale, 2013, 5, 1310-1314.	2.8	33
294	From Passive Inorganic Oxides to Active Matters of Micro/Nanomotors. Advanced Functional Materials, 2020, 30, 2003195.	7.8	33
295	A review of biomarkers in the context of type 1 diabetes: Biological sensing for enhanced glucose control. Bioengineering and Translational Medicine, 2021, 6, e10201.	3.9	33
296	Green MIP-202(Zr) Catalyst: Degradation and Thermally Robust Biomimetic Sensing of Nerve Agents. Journal of the American Chemical Society, 2021, 143, 18261-18271.	6.6	33
297	Nanomotor-based â€~writing' of surface microstructures. Chemical Communications, 2010, 46, 5704.	2.2	32
298	Multigear Bubble Propulsion of Transient Micromotors. Research, 2020, 2020, 7823615.	2.8	32
299	Wearable electrochemical microneedle sensing platform for real-time continuous interstitial fluid monitoring of apomorphine: Toward Parkinson management. Sensors and Actuators B: Chemical, 2022, 354, 131234.	4.0	32
300	Multistimuli-Responsive Camouflage Swimmers. Chemistry of Materials, 2018, 30, 1593-1601.	3.2	31
301	Onionâ€like Multifunctional Microtrap Vehicles for Attraction–Trapping–Destruction of Biological Threats. Angewandte Chemie - International Edition, 2020, 59, 3480-3485.	7.2	31
302	Electrochemical Deposition Tailors the Catalytic Performance of MnO ₂ â€Based Micromotors. Small, 2018, 14, e1802771.	5.2	30
303	Enzymatic glucose/oxygen biofuel cells: Use of oxygen-rich cathodes for operation under severe oxygen-deficit conditions. Biosensors and Bioelectronics, 2018, 122, 284-289.	5.3	30
304	Electronic textiles for energy, sensing, and communication. IScience, 2022, 25, 104174.	1.9	30
305	Acid Stability of Carbon Paste Enzyme Electrodes. Analytical Chemistry, 2006, 78, 7044-7047.	3.2	29
306	Electrochemical glucose biosensors. , 2008, , 57-69.		29

#	Article	IF	Citations
307	NanoBiosensing. Biological and Medical Physics Series, 2011, , .	0.3	29
308	A disposable electrochemical biosensor for l-DOPA determination in undiluted human serum. Electrochemistry Communications, 2014, 48, 28-31.	2.3	29
309	Textile-based wearable solid-contact flexible fluoride sensor: Toward biodetection of G-type nerve agents. Biosensors and Bioelectronics, 2021, 182, 113172.	5.3	29
310	Balloonâ€Embedded Sensors Withstanding Extreme Multiaxial Stretching and Global Bending Mechanical Stress: Towards Environmental and Security Monitoring. Advanced Materials Technologies, 2016, 1, 1600061.	3.0	28
311	Virusâ€Based Nanomotors for Cargo Delivery. ChemNanoMat, 2019, 5, 194-200.	1.5	28
312	Uric acid electrochemical sensing in biofluids based on Ni/Zn hydroxide nanocatalyst. Mikrochimica Acta, 2020, 187, 379.	2.5	28
313	Motion-based threat detection using microrods: experiments and numerical simulations. Nanoscale, 2015, 7, 7833-7840.	2.8	26
314	Zinc Microrocket Pills: Fabrication and Characterization toward Active Oral Delivery. Advanced Healthcare Materials, 2020, 9, e2000900.	3.9	25
315	Utilizing Iron's Attractive Chemical and Magnetic Properties in Microrocket Design, Extended Motion, and Unique Performance. Small, 2017, 13, 1700035.	5.2	24
316	Fully edible biofuel cells. Journal of Materials Chemistry B, 2018, 6, 3571-3578.	2.9	23
317	An integrated microcatheter-based dual-analyte sensor system for simultaneous, real-time measurement of propofol and fentanyl. Talanta, 2020, 218, 121205.	2.9	23
318	A Microstirring Pill Enhances Bioavailability of Orally Administered Drugs. Advanced Science, 2021, 8, 2100389.	5.6	23
319	Resettable sweat-powered wearable electrochromic biosensor. Biosensors and Bioelectronics, 2022, 215, 114565.	5.3	23
320	Orthogonal Identification of Gunshot Residue with Complementary Detection Principles of Voltammetry, Scanning Electron Microscopy, and Energy-Dispersive X-ray Spectroscopy: Sample, Screen, and Confirm. Analytical Chemistry, 2014, 86, 8031-8036.	3.2	21
321	Epidermal Tattoo Patch for Ultrasoundâ€Based Transdermal Microballistic Delivery. Advanced Materials Technologies, 2017, 2, 1700210.	3.0	21
322	Active Intracellular Delivery of a Cas9/sgRNA Complex Using Ultrasoundâ€Propelled Nanomotors. Angewandte Chemie, 2018, 130, 2687-2691.	1.6	20
323	Microneedle-mediated Intratumoral Delivery of Anti-CTLA-4 Promotes cDC1-dependent Eradication of Oral Squamous Cell Carcinoma with Limited irAEs. Molecular Cancer Therapeutics, 2022, 21, 616-624.	1.9	20
324	Bioelectronic system for the control and readout of enzyme logic gates. Sensors and Actuators B: Chemical, 2011, 155, 206-213.	4.0	19

#	Article	IF	CITATIONS
325	From Allâ€Printed 2D Patterns to Freeâ€Standing 3D Structures: Controlled Buckling and Selective Bonding. Advanced Materials Technologies, 2018, 3, 1800013.	3.0	19
326	Biopsy needle integrated with multi-modal physical/chemical sensor array. Biosensors and Bioelectronics, 2020, 148, 111822.	5. 3	19
327	Closing the loop for patients with Parkinson disease: where are we?. Nature Reviews Neurology, 2022, 18, 497-507.	4.9	19
328	Enzymatic biofuel cells based on protective hydrophobic carbon paste electrodes: towards epidermal bioenergy harvesting in the acidic sweat environment. Chemical Communications, 2020, 56, 2004-2007.	2.2	18
329	OPAA/fluoride biosensor chip towards field detection of G-type nerve agents. Sensors and Actuators B: Chemical, 2020, 320, 128344.	4.0	18
330	Screen-Printed Technologies Combined with Flow Analysis Techniques: Moving from Benchtop to Everywhere. Analytical Chemistry, 2022, 94, 250-268.	3.2	17
331	Switching from Chemical to Electrical Micromotor Propulsion across a Gradient of Gastric Fluid via Magnetic Rolling. ACS Applied Materials & Samp; Interfaces, 2022, 14, 30290-30298.	4.0	17
332	Self-propelled screen-printable catalytic swimmers. RSC Advances, 2015, 5, 78986-78993.	1.7	16
333	Thermally induced electrode protection against biofouling. Talanta, 2009, 77, 1757-1760.	2.9	14
334	Electrochemical signatures of multivitamin mixtures. Analyst, The, 2015, 140, 7522-7526.	1.7	14
335	Delayed ignition and propulsion of catalytic microrockets based on fuel-induced chemical dealloying of the inner alloy layer. Chemical Communications, 2016, 52, 11838-11841.	2.2	14
336	Decentralized vitamin C & Decentralized vitamin C & Decentralized immune system support. Biosensors and Bioelectronics, 2021, 194, 113590.	5. 3	14
337	Powered by sweat: Throw out the batteries: Biofuels will change the future of wearable devices. IEEE Spectrum, 2020, 57, 28-33.	0.5	13
338	Will future microbots be task-specific customized machines or multi-purpose "all in one―vehicles?. Nature Communications, 2021, 12, 7125.	5.8	13
339	Electrochemical Sensing of Explosives. , 2007, , 91-107.		12
340	Selective Voltammetric Measurements of Epinephrine and Norepinephrine in Presence of Common Interferences Using Cyclic Squareâ€voltammetry at Unmodified Carbon Electrodes. Electroanalysis, 2018, 30, 1028-1032.	1.5	12
341	Onionâ€like Multifunctional Microtrap Vehicles for Attraction–Trapping–Destruction of Biological Threats. Angewandte Chemie, 2020, 132, 3508-3513.	1.6	10
342	Nonâ€Invasive Sweatâ€Based Tracking of Lâ€Dopa Pharmacokinetic Profiles Following an Oral Tablet Administration. Angewandte Chemie, 2021, 133, 19222-19226.	1.6	10

#	Article	IF	CITATIONS
343	Combinatorial microneedle patch with tunable release kinetics and dual fast-deep/sustained release capabilities. Journal of Materials Chemistry B, 2021, 9, 2189-2199.	2.9	9
344	Electrical Propulsion and Cargo Transport of Microbowl Shaped Janus Particles. Small, 2022, 18, e2101809.	5.2	9
345	Detection and quantification of Mycobacterium tuberculosis antigen CFP10 in serum and urine for the rapid diagnosis of active tuberculosis disease. Scientific Reports, 2021, 11, 19193.	1.6	8
346	A 0.3V biofuel-cell-powered glucose/lactate biosensing system employing a 180nW 64dB SNR passive \hat{l} 1, ADC and a 920MHz wireless transmitter., 2018,,.		7
347	Monolithic processing of a layered flexible robotic actuator film for kinetic electronics. Scientific Reports, 2021, 11, 20015.	1.6	7
348	Wearable energy systems: what are the limits and limitations?. National Science Review, 2023, 10, .	4.6	6
349	Sensor Array Chip for Realâ€Time Field Detection and Discrimination of Organophosphorus Neurotoxins. ChemElectroChem, 2022, 9, .	1.7	6
350	Highâ€Power Lowâ€Cost Tissueâ€Based Biofuel Cell. Electroanalysis, 2013, 25, 838-844.	1.5	4
351	Swimmers Heal on the Move Following Catastrophic Damage. Nano Letters, 2021, 21, 2240-2247.	4.5	4
352	Concept of the "Universal Slope― Toward Substantially Shorter Decentralized Insulin Immunoassays. Analytical Chemistry, 2022, 94, 9217-9225.	3.2	4
353	Smallâ€Scale Propellers Deliver Miniature Versions of Themselves. Small, 2020, 16, 2000453.	5.2	3
354	Development of a Novel Insulin Sensor for Clinical Decision-Making. Journal of Diabetes Science and Technology, 2022, , 193229682110711.	1.3	3
355	Clinical Evaluation of a Novel Insulin Immunosensor. Journal of Diabetes Science and Technology, 2022, , 193229682210744.	1.3	3
356	Innentitelbild: Active Intracellular Delivery of a Cas9/sgRNA Complex Using Ultrasoundâ€Propelled Nanomotors (Angew. Chem. 10/2018). Angewandte Chemie, 2018, 130, 2532-2532.	1.6	1
357	63-OR: Towards Point-of-Care Devices: First Evaluation of an Insulin Immunosensor for Type 1 Diabetes. Diabetes, 2020, 69, .	0.3	1
358	A Robotic Electrochemical Biosensor Based on Kinetic Electronics Technique., 2021,,.		1