Sherif A El-Safty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/475183/publications.pdf

Version: 2024-02-01

205 papers 11,404 citations

19608

h-index

92 g-index

214 all docs

214 docs citations

times ranked

214

7506 citing authors

#	Article	IF	CITATIONS
1	Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. Progress in Materials Science, 2022, 124, 100866.	16.0	44
2	Portable sensitive and selective biosensing assay of dopamine in live cells using dual phosphorus and nitrogen doped carbon urchin-like structure. Chemical Engineering Journal, 2022, 430, 132818.	6.6	32
3	Enzymeless copper microspheres@carbon sensor design for sensitive and selective acetylcholine screening in human serum. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112228.	2.5	11
4	Chipset Nanosensor Based on Nâ€Doped Carbon Nanobuds for Selective Screening of Epinephrine in Human Samples. Advanced Materials Interfaces, 2022, 9, 2101473.	1.9	15
5	Nitrogen-doped carbon hollow trunk-like structure as a portable electrochemical sensor for noradrenaline detection in neuronal cells. Analytica Chimica Acta, 2022, 1192, 339380.	2.6	21
6	Vancomycin-Loaded Furriness Amino Magnetic Nanospheres for Rapid Detection of Gram-Positive Water Bacterial Contamination. Nanomaterials, 2022, 12, 510.	1.9	6
7	Novel graphene-based ternary nanocomposite coatings as ecofriendly antifouling brush surfaces. Progress in Organic Coatings, 2022, 167, 106803.	1.9	15
8	Electrochemical sensors-based phosphorus-doped carbon for determination of adenine DNA-nucleobases in living cells. Carbon, 2021, 173, 1093-1104.	5.4	34
9	Non-metal sensory electrode design and protocol of DNA-nucleobases in living cells exposed to oxidative stresses. Analytica Chimica Acta, 2021, 1142, 143-156.	2.6	22
10	Selective monitoring of ultra-trace guanine and adenine from hydrolyzed DNA using boron-doped carbon electrode surfaces. Sensors and Actuators B: Chemical, 2021, 329, 129192.	4.0	28
11	Facile design of graphene oxide-ZnO nanorod-based ternary nanocomposite as a superhydrophobic and corrosion-barrier coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125793.	2.3	67
12	Mesoscopic engineering materials for visual detection and selective removal of copper ions from drinking and waste water sources. Journal of Hazardous Materials, 2021, 406, 124314.	6.5	47
13	Influence of hollow sphere surface heterogeneity and geometry of N-doped carbon on sensitive monitoring of acetaminophen in human fluids and pharmaceutical products. New Journal of Chemistry, 2021, 45, 5452-5462.	1.4	14
14	Engineering nanoscale hierarchical morphologies and geometrical shapes for microbial inactivation in aqueous solution. Materials Science and Engineering C, 2021, 122, 111844.	3.8	16
15	Microporous P-doped carbon spheres sensory electrode for voltammetry and amperometry adrenaline screening in human fluids. Mikrochimica Acta, 2021, 188, 138.	2.5	19
16	Antimicrobial and immunomodulatory potential of nanoscale hierarchical one-dimensional zinc oxide and silicon carbide materials. Materials Chemistry and Physics, 2021, 263, 124376.	2.0	23
17	One-dimensional hierarchical anode/cathode materials engineering for high-performance lithium ion batteries. Energy Storage Materials, 2021, 37, 363-377.	9.5	18
18	Design of porous S-doped carbon nanostructured electrode sensor for sensitive and selective detection of guanine from DNA samples. Microporous and Mesoporous Materials, 2021, 320, 111097.	2.2	18

#	Article	IF	CITATIONS
19	Optical glucose biosensor built-in disposable strips and wearable electronic devices. Biosensors and Bioelectronics, 2021, 185, 113237.	5.3	33
20	Inorganic-organic mesoporous hybrid segregators for selective and sensitive extraction of precious elements from urban mining. Journal of Colloid and Interface Science, 2021, 604, 61-79.	5.0	32
21	Vibration Analysis of Nanoplate with the Effects of Surface Irregularity and Initial Stresses. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 48-53.	0.1	1
22	Structurally Folded Curvature Surface Models of Geodes/Agate Rosettes (Cathode/Anode) as Vehicle/Truck Storage for High Energy Density Lithiumâ€ion Batteries. Batteries and Supercaps, 2020, 3, 76-92.	2.4	15
23	Large-scale giant architectonic electrodes designated with complex geometrics and super topographic surfaces for fully cycled dynamic LIB modules. Energy Storage Materials, 2020, 26, 260-275.	9.5	12
24	Mesoscopic open-eye core–shell spheroid carved anode/cathode electrodes for fully reversible and dynamic lithium-ion battery models. Nanoscale Advances, 2020, 2, 3525-3541.	2.2	7
25	Three-Dimensional Circular Surface Curvature of a Spherule-Based Electrode for Selective Signaling and Dynamic Mobility of Norepinephrine in Living Cells. ACS Applied Bio Materials, 2020, 3, 8496-8506.	2.3	29
26	Complex Structure Model Mutated Anode/Cathode Electrodes for Improving Large-Scale Battery Designs. ACS Applied Energy Materials, 2020, 3, 9168-9181.	2.5	15
27	Multifaceted geometric 3D mesopolytope cathodes and its directional transport gates for superscalable LIB models. Applied Materials Today, 2020, 19, 100590.	2.3	13
28	Advanced Nanoscale Buildâ€Up Sensors for Daily Life Monitoring of Diabetics. Advanced Materials Interfaces, 2020, 7, 2000153.	1.9	23
29	Anisotropic alignments of hierarchical Li2SiO3/TiO2 @nano-C anode//LiMnPO4@nano-C cathode architectures for full-cell lithium-ion battery. National Science Review, 2020, 7, 863-880.	4.6	24
30	Progress in biomimetic leverages for marine antifouling using nanocomposite coatings. Journal of Materials Chemistry B, 2020, 8, 3701-3732.	2.9	157
31	Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases. Materials Today Bio, 2020, 5, 100044.	2.6	18
32	Vibrational analysis of an irregular single-walled carbon nanotube incorporating initial stress effects. Nanotechnology Reviews, 2020, 9, 1481-1490.	2.6	8
33	Theoretical and Experimental Sets of Choice Anode/Cathode Architectonics for High-Performance Full-Scale LIB Built-up Models. Nano-Micro Letters, 2019, 11, 84.	14.4	34
34	Meso/macroscopically multifunctional surface interfaces, ridges, and vortex-modified anode/cathode cuticles as force-driven modulation of high-energy density of LIB electric vehicles. Scientific Reports, 2019, 9, 14701.	1.6	14
35	Superhydrophobic foul resistant and self-cleaning polymer coating. , 2019, , 181-203.		14
36	Disposable screen-printed electrodes modified with uniform iron oxide nanocubes for the simple electrochemical determination of meclizine, an antihistamine drug. Analytical Methods, 2019, 11, 282-287.	1.3	18

3

#	Article	lF	CITATIONS
37	A well-thought-out sensory protocol for screening of oxygen reactive species released from cancer cells. Sensors and Actuators B: Chemical, 2019, 284, 456-467.	4.0	58
38	Superhydrophobic Silicone/TiO ₂ â€"SiO ₂ Nanorodâ€like Composites for Marine Fouling Release Coatings. ChemistrySelect, 2019, 4, 3395-3407.	0.7	56
39	Superhydrophobic coating of silicone/β–MnO2 nanorod composite for marine antifouling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 518-530.	2.3	98
40	Robust alkyd/exfoliated graphene oxide nanocomposite as a surface coating. Progress in Organic Coatings, 2019, 126, 106-118.	1.9	57
41	Antibacterial Activity of Magnesium Oxide Nanoâ€hexagonal Sheets for Wastewater Remediation. Environmental Progress and Sustainable Energy, 2019, 38, S260.	1.3	19
42	Aluminum Hydroxide Nanosheets with Structure-dependent Storage and Transportation toward Cancer Chemotherapy. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2019, , 1.	0.6	1
43	Facile synthesis of microporous sulfur-doped carbon spheres as electrodes for ultrasensitive detection of ascorbic acid in food and pharmaceutical products. New Journal of Chemistry, 2018, 42, 5037-5044.	1.4	62
44	Anisotropic N-Graphene-diffused Co3O4 nanocrystals with dense upper-zone top-on-plane exposure facets as effective ORR electrocatalysts. Scientific Reports, 2018, 8, 3740.	1.6	55
45	Extraction and recovery of Co ²⁺ ions from spent lithium-ion batteries using hierarchical mesosponge γ-Al ₂ O ₃ monolith extractors. Green Chemistry, 2018, 20, 1841-1857.	4.6	60
46	Nanohexagonal Fe2O3 Electrode for One-Step Selective Monitoring of Dopamine and Uric Acid in Biological Samples. Electrocatalysis, 2018, 9, 514-525.	1.5	64
47	Sensitive and selective fluorometric determination and monitoring of Zn2+ ions using supermicroporous Zr-MOFs chemosensors. Microchemical Journal, 2018, 139, 24-33.	2.3	74
48	Highly-efficient removal of AsV, Pb2+, Fe3+, and Al3+ pollutants from water using hierarchical, microscopic TiO2 and TiOF2 adsorbents through batch and fixed-bed columnar techniques. Journal of Cleaner Production, 2018, 182, 910-925.	4.6	73
49	Dual colorimetric and fluorometric monitoring of Bi3+ ions in water using supermicroporous Zr-MOFs chemosensors. Journal of Luminescence, 2018, 198, 438-448.	1.5	70
50	Ultrasensitive in-vitro monitoring of monoamine neurotransmitters from dopaminergic cells. Sensors and Actuators B: Chemical, 2018, 259, 114-124.	4.0	83
51	Eco-friendly design of superhydrophobic nano-magnetite/silicone composites for marine foul-release paints. Progress in Organic Coatings, 2018, 116, 21-34.	1.9	90
52	Silicone/graphene oxide sheet-alumina nanorod ternary composite for superhydrophobic antifouling coating. Progress in Organic Coatings, 2018, 121, 160-172.	1.9	143
53	One-step selective screening of bioactive molecules in living cells using sulfur-doped microporous carbon. Biosensors and Bioelectronics, 2018, 109, 237-245.	5.3	88
54	Design of hierarchical electrocatalytic mediator for one step, selective screening of biomolecules in biological fluid samples. Journal of Applied Electrochemistry, 2018, 48, 529-542.	1.5	61

#	Article	lF	CITATIONS
55	Broccoli-shaped biosensor hierarchy for electrochemical screening of noradrenaline in living cells. Biosensors and Bioelectronics, 2018, 100, 122-131.	5.3	113
56	Three-Dimensional, Vertical Platelets of ZnO Carriers for Selective Extraction of Cobalt Ions from Waste Printed Circuit Boards. ACS Sustainable Chemistry and Engineering, 2018, 6, 13813-13825.	3.2	39
57	Linseed oil-based alkyd/Cu ₂ O nanocomposite coatings for surface applications. New Journal of Chemistry, 2018, 42, 10048-10058.	1.4	35
58	Biosensors: 3Dâ€Ridge Stocked Layers of Nitrogenâ€Doped Mesoporous Carbon Nanosheets for Ultrasensitive Monitoring of Dopamine Released from PC12 Cells under K ⁺ Stimulation (Adv. Healthcare Mater. 16/2018). Advanced Healthcare Materials, 2018, 7, 1870065.	3.9	1
59	3Dâ€Ridge Stocked Layers of Nitrogenâ€Doped Mesoporous Carbon Nanosheets for Ultrasensitive Monitoring of Dopamine Released from PC12 Cells under K ⁺ Stimulation. Advanced Healthcare Materials, 2018, 7, e1701459.	3.9	53
60	Mesoporous Cagedâ€Î³â€AlOOHâ€Doubleâ€Stranded RNA Analog Complexes for Cancer Immunotherapy. Advanced Biology, 2018, 2, 1700114.	3.0	21
61	Graphene-supported		

#	Article	IF	CITATIONS
73	Hierarchical C-N doped NiO with dual-head echinop flowers for ultrasensitive monitoring of epinephrine in human blood serum. Mikrochimica Acta, 2017, 184, 4553-4562.	2.5	81
74	Mesoporous Organic–Inorganic Core–Shell Necklace Cages for Potentially Capturing Cd ²⁺ lons from Water Sources. ChemistrySelect, 2017, 2, 6135-6142.	0.7	32
75	Hexagonal Mg(OH) ₂ Nanosheets as Antibacterial Agent for Treating Contaminated Water Sources. ChemistrySelect, 2017, 2, 11431-11437.	0.7	29
76	Ratiometric Fluorescent Chemosensor for Zn ²⁺ lons in Environmental Samples Using Supermicroporous Organicâ€Inorganic Structures as Potential Platforms. ChemistrySelect, 2017, 2, 11083-11090.	0.7	52
77	Antifungal activity of fabricated mesoporous alumina nanoparticles against root rot disease of tomato caused by <i>Fusarium oxysporium</i> . Pest Management Science, 2017, 73, 1121-1126.	1.7	103
78	Trimethyl- \hat{l}^2 -cyclodextrin-encapsulated monolithic capillary columns: Preparation, characterization and chiral nano-LC application. Talanta, 2017, 169, 239-248.	2.9	29
79	Hierarchically porous, and Cu- and Zn-containing \hat{I}^3 -AlOOH mesostrands as adjuvants for cancer immunotherapy. Scientific Reports, 2017, 7, 16749.	1.6	27
80	Recent trend in controlling root rot disease of tomato caused by Fusarium Solani using aluminasilica nanoparticles., 2017, 4, 105-119.		7
81	Toxicity of some metal oxides nanoparticles on male rats with respect to biochemical and histological changes., 2017, 4, 68-75.		1
82	Mesoporous Carbon/Co3O4 Hybrid as Efficient Electrode for Methanol Electrooxidation in Alkaline Conditions. International Journal of Electrochemical Science, 2016, , 8374-8390.	0.5	18
83	Carbon Supported Engineering NiCo2O4 Hybrid Nanofibers with Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction. Materials, 2016, 9, 759.	1.3	26
84	Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells. Scientific Reports, 2016, 6, 24330.	1.6	56
85	Smart photo-induced silicone/TiO2 nanocomposites with dominant [110] exposed surfaces for self-cleaning foul-release coatings of ship hulls. Materials and Design, 2016, 101, 218-225.	3.3	89
86	Data on photo-nanofiller models for self-cleaning foul release coating of ship hulls. Data in Brief, 2016, 8, 1357-1364.	0.5	28
87	Nitrogen-doped carbon-embedded TiO2 nanofibers as promising oxygen reduction reaction electrocatalysts. Journal of Power Sources, 2016, 330, 292-303.	4.0	78
88	Mesoscopic Fabric Sheet Racks and Blocks as Catalysts with Efficiently Exposed Surfaces for Methanol and Ethanol Electrooxidation. Advanced Materials Interfaces, 2016, 3, 1600743.	1.9	46
89	Ultrasensitive label-free detection of cardiac biomarker myoglobin based on surface-enhanced Raman spectroscopy. Sensors and Actuators B: Chemical, 2016, 228, 401-409.	4.0	61
90	A natural clayey adsorbent for selective removal of lead from aqueous solutions. Applied Clay Science, 2016, 126, 89-97.	2.6	64

#	Article	IF	CITATIONS
91	Radially oriented nanostrand electrodes to boost glucose sensing in mammalian blood. Biosensors and Bioelectronics, 2016, 77, 656-665.	5.3	41
92	Detection and Recovery of Palladium, Gold and Cobalt Metals from the Urban Mine Using Novel Sensors/Adsorbents Designated with Nanoscale Wagon-wheel-shaped Pores. Journal of Visualized Experiments, 2015, , e53044.	0.2	10
93	Mesoporous Alumina Nanoparticles as Host Tunnelâ€like Pores for Removal and Recovery of Insecticides from Environmental Samples. ChemPlusChem, 2015, 80, 1119-1126.	1.3	39
94	Oneâ€Pot Fabrication of Dendritic NiO@carbon–nitrogen Dot Electrodes for Screening Blood Glucose Level in Diabetes. Advanced Healthcare Materials, 2015, 4, 2110-2119.	3.9	52
95	Mesotubularâ€Structured Hybrid Membrane Nanocontainer for Periodical Monitoring, Separation, and Recovery of Cobalt Ions from Water. Chemistry - an Asian Journal, 2015, 10, 1909-1918.	1.7	16
96	Nanomembrane Canister Architectures for the Visualization and Filtration of Oxyanion Toxins with Oneâ€6tep Processing. Chemistry - an Asian Journal, 2015, 10, 2467-2478.	1.7	25
97	Hierarchical Nanohexagon Ceramic Sheet Layers as Platform Adsorbents for Hydrophilic and Hydrophobic Insecticides from Agricultural Wastewater. ChemPlusChem, 2015, 80, 1769-1778.	1.3	22
98	Meso-/Nanoporous Semiconducting Metal Oxides for Gas Sensor Applications. Journal of Nanomaterials, 2015, 2015, 1-14.	1.5	71
99	Mesosponge Optical Sinks for Multifunctional Mercury Ion Assessment and Recovery from Water Sources. ACS Applied Materials & Samp; Interfaces, 2015, 7, 13217-13231.	4.0	32
100	Promising supercapacitor electrodes based immobilization of proteins onto macroporous Ni foam materials. Journal of Energy Chemistry, 2015, 24, 31-38.	7.1	35
101	One-pot layer casting-guided synthesis of nanospherical aluminosilica@organosilica@alumina core–shells wrapping colorant dendrites for environmental application. RSC Advances, 2015, 5, 60307-60321.	1.7	12
102	Modeling of spherical silver nanoparticles in silicone-based nanocomposites for marine antifouling. RSC Advances, 2015, 5, 63175-63185.	1.7	61
103	Tailored design of Cu ₂ O nanocube/silicone composites as efficient foul-release coatings. RSC Advances, 2015, 5, 19933-19943.	1.7	52
104	Mesocage collector cavities as nanopockets for remediation and real assessment of carbamate pesticides in aquatic water. Nano Structures Nano Objects, 2015, 3, 17-27.	1.9	20
105	Electron transport dependence of nanoscale hemeprotein molecular structures for engineering electrochemical nanosensor. Nano Structures Nano Objects, 2015, 2, 35-44.	1.9	5
106	Optical mesoscopic membrane sensor layouts for water-free and blood-free toxicants. Nano Research, 2015, 8, 3150-3163.	5.8	52
107	Photo-induced recovery, optical detection, and separation of noxious SeO ₃ ^{2â^'} using a mesoporous nanotube hybrid membrane. Journal of Materials Chemistry A, 2015, 3, 17578-17589.	5.2	45
108	Hexagonalâ€Prismâ€Shaped Optical Sensor/Captor for the Optical Recognition and Sequestration of Pd ^{II} Ions from Urban Mines. European Journal of Inorganic Chemistry, 2015, 2015, 179-191.	1.0	46

#	Article	IF	Citations
109	Fabrication of a highly selective nonenzymatic amperometric sensor for hydrogen peroxide based on nickel foam/cytochrome c modified electrode. Sensors and Actuators B: Chemical, 2015, 207, 158-166.	4.0	61
110	Nanosized rambutan-like nickel oxides as electrochemical sensor and pseudocapacitor. Sensors and Actuators B: Chemical, 2014, 193, 644-652.	4.0	53
111	Hemoproteins–nickel foam hybrids as effective supercapacitors. Chemical Communications, 2014, 50, 1356-1358.	2.2	63
112	Synthesis, Morphological Control, and Properties of Silver Nanoparticles in Potential Applications. Particle and Particle Systems Characterization, 2014, 31, 293-316.	1.2	152
113	Monolithic scaffolds for highly selective ion sensing/removal of Co(<scp>ii</scp>), Cu(<scp>ii</scp>), and Cd(<scp>ii</scp>) ions in water. Analyst, The, 2014, 139, 6393-6405.	1.7	69
114	Environmental remediation and monitoring of cadmium. TrAC - Trends in Analytical Chemistry, 2014, 62, 56-68.	5.8	85
115	Design and evaluation of optical mesocaptor for the detection/recovery of Au(III) from an urban mine. Sensors and Actuators B: Chemical, 2014, 203, 363-374.	4.0	47
116	Simple and Sensitive Electrochemical Sensor-Based Three-Dimensional Porous Ni-Hemoglobin Composite Electrode. Chemosensors, 2014, 2, 235-250.	1.8	24
117	Reproducible Design for the Optical Screening and Sensing of Hg(II) Ions. Chemosensors, 2014, 2, 219-234.	1.8	13
118	Simultaneous Detection and Removal of Cadmium Ions from Different Environmental Matrices. Journal of Life Cycle Assessment Japan, 2014, 10, 126-141.	0.0	6
119	Trapping of biological macromolecules in the three-dimensional mesocage pore cavities of monolith adsorbents. Journal of Porous Materials, 2013, 20, 679-692.	1.3	24
120	Hierarchical inorganic–organic multi-shell nanospheres for intervention and treatment of lead-contaminated blood. Nanoscale, 2013, 5, 7920.	2.8	47
121	Copper(II) ions capturing from water using ligand modified a new type mesoporous adsorbent. Chemical Engineering Journal, 2013, 221, 322-330.	6.6	304
122	Architecture of optical sensor for recognition of multiple toxic metal ions from water. Journal of Hazardous Materials, 2013, 260, 833-843.	6.5	93
123	Mesoporous hexagonal and cubic aluminosilica adsorbents for toxic nitroanilines from water. Environmental Science and Pollution Research, 2013, 20, 3863-3876.	2.7	22
124	Selective encapsulation of hemoproteins from mammalian cells using mesoporous metal oxide nanoparticles. Colloids and Surfaces B: Biointerfaces, 2013, 111, 460-468.	2.5	11
125	Ultra-trace recognition and removal of toxic chromium (VI) ions from water using visual mesocaptor. Journal of Hazardous Materials, 2013, 244-245, 726-735.	6.5	58
126	Mesoporous NiO nanoarchitectures for electrochemical energy storage: influence of size, porosity, and morphology. RSC Advances, 2013, 3, 23801.	1.7	111

#	Article	IF	CITATIONS
127	Simultaneous optical detection and extraction of cobalt(II) from lithium ion batteries using nanocollector monoliths. Sensors and Actuators B: Chemical, 2013, 176, 1015-1025.	4.0	146
128	Tailorâ€Made Microâ€Object Optical Sensor Based on Mesoporous Pellets for Visual Monitoring and Removal of Toxic Metal Ions from Aqueous Media. Small, 2013, 9, 2288-2296.	5.2	71
129	Bioadsorption of proteins on large mesocage-shaped mesoporous alumina monoliths. Colloids and Surfaces B: Biointerfaces, 2013, 103, 288-297.	2.5	30
130	Investigation of palladium(II) detection and recovery using ligand modified conjugate adsorbent. Chemical Engineering Journal, 2013, 222, 172-179.	6.6	161
131	Trace copper(II) ions detection and removal from water using novel ligand modified composite adsorbent. Chemical Engineering Journal, 2013, 222, 67-76.	6.6	312
132	Optical mesosensor for capturing of Fe(III) and Hg(II) ions from water and physiological fluids. Sensors and Actuators B: Chemical, 2013, 183, 58-70.	4.0	60
133	Visual monitoring and removal of divalent copper, cadmium, and mercury ions from water by using mesoporous cubic la3d aluminosilica sensors. Separation and Purification Technology, 2013, 116, 73-86.	3.9	75
134	Optical Nanosphere Sensor Based on Shellâ€Byâ€Shell Fabrication for Removal of Toxic Metals from Human Blood. Advanced Healthcare Materials, 2013, 2, 854-862.	3.9	50
135	Development of Mesoscopically Assembled Sulfated Zirconia Nanoparticles as Promising Heterogeneous and Recyclable Biodiesel Catalysts. ChemCatChem, 2013, 5, 3050-3059.	1.8	35
136	Mesoporous aluminosilica sensors for the visual removal and detection of Pd(II) and Cu(II) ions. Microporous and Mesoporous Materials, 2013, 166, 195-205.	2.2	143
137	Water Treatment through Chemical Transformation and Elimination of Organic Toxin Based on Mesoporous Nickel Oxide Nanocrystals. Advanced Materials Research, 2013, 685, 139-144.	0.3	7
138	Mesoporous NiO Nanosheets for the Catalytic Conversion of Organic Contaminants. Current Catalysis, 2013, 2, 17-26.	0.5	10
139	Topical Developments of Nanoporous Membrane Filters for Ultrafine Noble Metal Nanoparticles. European Journal of Inorganic Chemistry, 2012, 2012, 5439-5450.	1.0	24
140	Encapsulation of proteins into tunable and giant mesocage alumina. Chemical Communications, 2012, 48, 6708.	2.2	36
141	Mesoporous nanomagnet supercaptors for selective heme-proteins from human cells. Chemical Communications, 2012, 48, 10832.	2.2	24
142	A multi-pH-dependent, single optical mesosensor/captor design for toxic metals. Chemical Communications, 2012, 48, 9652.	2.2	51
143	Optical mesosensors for monitoring and removal of ultra-trace concentration of Zn(ii) and Cu(ii) ions from water. Analyst, The, 2012, 137, 5278.	1.7	140
144	Optical detection/collection of toxic Cd(II) ions using cubic Ia3d aluminosilica mesocage sensors. Talanta, 2012, 98, 69-78.	2.9	46

#	Article	IF	Citations
145	Mercury-ion optical sensors. TrAC - Trends in Analytical Chemistry, 2012, 38, 98-115.	5.8	89
146	Mesoporous NiO nanomagnets as catalysts and separators of chemical agents. Applied Catalysis B: Environmental, 2012, 127, 1-10.	10.8	48
147	Enzyme encapsulation using highly ordered mesoporous silica monoliths. Materials Letters, 2012, 89, 184-187.	1.3	18
148	Mesocylindrical Aluminosilica Monolith Biocaptors for Sizeâ€Selective Macromolecule Cargos. Advanced Functional Materials, 2012, 22, 3013-3021.	7.8	72
149	Multidirectional porous NiO nanoplatelet-like mosaics as catalysts for green chemical transformations. Applied Catalysis B: Environmental, 2012, 123-124, 162-173.	10.8	35
150	Visual detection and revisable supermicrostructure sensor systems of Cu(II) analytes. Sensors and Actuators B: Chemical, 2012, 166-167, 253-263.	4.0	47
151	Mesoporous aluminosilica monoliths for the adsorptive removal of small organic pollutants. Journal of Hazardous Materials, 2012, 201-202, 23-32.	6.5	47
152	Nanoadsorbent of Organic Compounds Based on Two- and Three-Dimensional Mesocylinder Monoliths. , 2012, 02, .		10
153	Highly sensitive and selective volatile organic compound gas sensors based on mesoporous nanocomposite monoliths. Analytical Methods, 2011, 3, 1948.	1.3	48
154	Meso- and Macroporous Co ₃ O ₄ Nanorods for Effective VOC Gas Sensors. Journal of Physical Chemistry C, 2011, 115, 8466-8474.	1.5	280
155	Optical supermicrosensor responses for simple recognition and sensitive removal of Cu (II) Ion target. Talanta, 2011, 83, 1341-1351.	2.9	49
156	Removal of trace arsenic(V) and phosphate from water by a highly selective ligand exchange adsorbent. Journal of Environmental Sciences, 2011, 23, 1947-1954.	3.2	177
157	Large three-dimensional mesocage pores tailoring silica nanotubes as membrane filters: nanofiltration and permeation flux of proteins. Journal of Materials Chemistry, 2011, 21, 5593.	6.7	150
158	Instant synthesis of mesoporous monolithic materials with controllable geometry, dimension and stability: a review. Journal of Porous Materials, 2011, 18, 259-287.	1.3	41
159	Size-selective separations of biological macromolecules on mesocylinder silica arrays. Analytica Chimica Acta, 2011, 694, 151-161.	2.6	42
160	Buildingâ€Blockâ€Based Mosaic Cage Silica Nanotubes for Molecular Transport and Separation. Small, 2011, 7, 62-65.	5.2	57
161	Nanofiltration: Building-Block-Based Mosaic Cage Silica Nanotubes for Molecular Transport and Separation (Small 1/2011). Small, 2011, 7, 2-2.	5.2	1
162	Synthesis of Mesoporous NiO Nanosheets for the Detection of Toxic NO ₂ Gas. Chemistry - A European Journal, 2011, 17, 12896-12901.	1.7	158

#	Article	IF	Citations
163	Nano-model membrane filters for the well-controlled separation of biomolecules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 377, 44-53.	2.3	28
164	Highly ordered, thermally/hydrothermally stable cubic Ia3d aluminosilica monoliths with low silica in frameworks. Microporous and Mesoporous Materials, 2011, 138, 51-62.	2.2	33
165	A weak-base fibrous anion exchanger effective for rapid phosphate removal from water. Journal of Hazardous Materials, 2011, 188, 164-171.	6.5	217
166	Mesoporous silica hybrid membranes for precise size-exclusive separation of silver nanoparticles. Journal of Colloid and Interface Science, 2011, 355, 348-358.	5.0	31
167	Efficient adsorbents of nanoporous aluminosilicate monoliths for organic dyes from aqueous solution. Journal of Colloid and Interface Science, 2011, 359, 9-18.	5.0	173
168	Designs for size-exclusion separation of macromolecules by densely-engineered mesofilters. TrAC - Trends in Analytical Chemistry, 2011, 30, 447-458.	5.8	43
169	Gas nanosensor design packages based on tungsten oxide: mesocages, hollow spheres, and nanowires. Nanotechnology, 2011, 22, 485503.	1.3	50
170	Mesoporous silica nanotubes hybrid membranes for functional nanofiltration. Nanotechnology, 2010, 21, 375603.	1.3	36
171	Organic–inorganic mesoporous silica nanostrands for ultrafine filtration of spherical nanoparticles. Chemical Communications, 2010, 46, 3917.	2.2	62
172	Functionalized hexagonal mesoporous silica monoliths withÂhydrophobic azo-chromophore for enhanced Co(II) ion monitoring. Adsorption, 2009, 15, 227-239.	1.4	61
173	Organic–inorganic hybrid mesoporous monoliths for selective discrimination and sensitive removal of toxic mercury ions. Journal of Materials Science, 2009, 44, 6764-6774.	1.7	42
174	Review on the key controls of designer copolymer-silica mesophase monoliths (HOM-type) with large particle morphology, ordered geometry and uniform pore dimension. Journal of Porous Materials, 2008, 15, 369-387.	1.3	38
175	Optical Nanoscale Poolâ€onâ€Surface Design for Control Sensing Recognition of Multiple Cations. Advanced Functional Materials, 2008, 18, 1485-1500.	7.8	84
176	Nanoscale Membrane Strips for Benign Sensing of Hg ^{II} Ions: A Route to Commercial Waste Treatments. Advanced Functional Materials, 2008, 18, 1739-1750.	7.8	62
177	Synthesis, characterization and catalytic activity of highly ordered hexagonal and cubic composite monoliths. Journal of Colloid and Interface Science, 2008, 319, 477-488.	5.0	34
178	Nanosized NiO particles wrapped into uniformly mesocaged silica frameworks as effective catalysts of organic amines. Applied Catalysis A: General, 2008, 337, 121-129.	2,2	51
179	Heterogeneous catalytic activity of NiO-silica composites designated with cubic Pm3n cage nanostructures. Applied Catalysis B: Environmental, 2008, 82, 169-179.	10.8	26
180	Uniformly Mesocaged Cubic <i>Fd</i> 3 <i>m</i> Monoliths as Modal Carriers for Optical Chemosensors. Journal of Physical Chemistry C, 2008, 112, 4825-4835.	1.5	73

#	Article	IF	CITATIONS
181	Cationic surfactant templates for newly developed cubic Fd3m silica mesocage structures. Materials Letters, 2008, 62, 2950-2953.	1.3	15
182	Three-Dimensional Wormhole and Ordered Mesostructures and Their Applicability as Optically Ion-Sensitive Probe Templates. Chemistry of Materials, 2008, 20, 2644-2654.	3.2	66
183	Controlled Design of Ordered and Disordered Pore Architectures, Geometries, and Dimensions of HOM-Type Mesostructured Monoliths and Their Hydrothermal Stabilities. Journal of Physical Chemistry C, 2008, 112, 5476-5489.	1.5	55
184	Adsorption of aniline onto hexagonal mesoporous silicate monoliths (HOM-2). International Journal of Environment and Pollution, 2008, 34, 97.	0.2	7
185	Optical Nanosensor Design with Uniform Pore Geometry and Large Particle Morphology. Chemistry - A European Journal, 2007, 13, 9245-9255.	1.7	81
186	Nanosensor Design Packages: A Smart and Compact Development for Metal Ions Sensing Responses. Advanced Functional Materials, 2007, 17, 3731-3745.	7.8	113
187	Stability of highly ordered nanostructures with uniformly cylindrical mesochannels. Acta Materialia, 2006, 54, 899-908.	3.8	18
188	Optical Sensors Based on Nanostructured Cage Materials for the Detection of Toxic Metal Ions. Angewandte Chemie - International Edition, 2006, 45, 7202-7208.	7.2	219
189	Large-Scale Design of Cubicla3d Mesoporous Silica Monoliths with High Order, Controlled Pores, and Hydrothermal Stability. Advanced Materials, 2005, 17, 47-53.	11.1	82
190	Monolithic ordered silica with large cage and cylindrical structures, and hydrothermal stable frameworks. Studies in Surface Science and Catalysis, 2005, , 431-438.	1.5	5
191	Transparent cubic Fd3m mesoporous silica monoliths with highly controllable pore architectures. Journal of Materials Chemistry, 2005, 15, 2590.	6.7	35
192	Design of Highly Stable, Ordered Cage Mesostructured Monoliths with Controllable Pore Geometries and Sizes. Chemistry of Materials, 2005, 17, 3137-3145.	3.2	67
193	General and Simple Approach for Control Cage and Cylindrical Mesopores, and Thermal/Hydrothermal Stable Frameworks. Journal of Physical Chemistry B, 2005, 109, 9255-9264.	1.2	63
194	Microemulsion Liquid Crystal Templates for Highly Ordered Three-Dimensional Mesoporous Silica Monoliths with Controllable Mesopore Structures. Chemistry of Materials, 2004, 16, 384-400.	3.2	99
195	Fabrication of Crystalline, Highly Ordered Three-Dimensional Silica Monoliths (HOM-n) with Large, Morphological Mesopore Structures. Advanced Materials, 2003, 15, 1893-1899.	11.1	68
196	Sorption and diffusion of phenols onto well-defined ordered nanoporous monolithic silicas. Journal of Colloid and Interface Science, 2003, 260, 184-194.	5.0	32
197	Monolithic Nanostructured Silicate Family Templated by Lyotropic Liquid-Crystalline Nonionic Surfactant Mesophases. Chemistry of Materials, 2003, 15, 2892-2902.	3.2	60
198	Synthesis of monolithic nanostructured silicate family materials through the lyotropic liquid crystalline mesophases of non-ionic surfactant. Studies in Surface Science and Catalysis, 2003, 146, 173-176.	1.5	5

SHERIF A EL-SAFTY

#	Article	IF	CITATIONS
199	Formation of highly ordered mesoporous silica materials adopting lyotropic liquid crystal mesophases. Journal of Materials Chemistry, 2002, 12, 117-123.	6.7	51
200	Kinetics and mechanism of o-aminophenol oxidation by the supported mesoporous silica (HISiO2) in the binary system with Amberlite resin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 203, 217-228.	2.3	17
201	Heterogeneous kinetic studies of the hydrogen peroxide decomposition with some transition metal-heterocyclic complexes. International Journal of Chemical Kinetics, 2001, 33, 617-624.	1.0	11
202	Synthesis, Characterisation and Chemistry of Transition Metals in Mesoporous Silica. Studies in Surface Science and Catalysis, 2001, , 667-672.	1.5	2
203	Kinetics and Mechanism of the Sorption of Some Aromatic Amines onto Amberlite IRA-904 Anion-Exchange Resin. Journal of Colloid and Interface Science, 2000, 221, 58-63.	5.0	67
204	Characteristic mechanisms of the homogeneous and heterogeneous oxidation of aromatic amines with transition metalî—,oxalate complexes. Polyhedron, 2000, 19, 1317-1328.	1.0	43
205	Incorporation of Transition-Metal Complexes in Functionalized Mesoporous Silica and Their Activity toward the Oxidation of Aromatic Amines. Journal of Physical Chemistry B, 2000, 104, 10271-10281.	1.2	84