
SUPREE PINITSOONTORN

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4751504/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Machine Learning Approach for Maximizing Thermoelectric Properties of BiCuSeO and Discovering New Doping Element. Energies, 2022, 15, 779.	1.6	5
2	The observation of spin Seebeck effect in opposite spin Hall angle materials of polycrystalline bulk-Fe3O4/(Co/Fe) systems. AIP Advances, 2022, 12, .	0.6	4
3	Nanoporous Magnetic Carbon Nanofiber Aerogels with Embedded α-Fe/γ-Fe Core–Shell Nanoparticles for Oil Sorption and Recovery. ACS Applied Nano Materials, 2022, 5, 2885-2896.	2.4	21
4	Flexible Thermoelectric Paper and Its Thermoelectric Generator from Bacterial Cellulose/Ag ₂ Se Nanocomposites. ACS Applied Energy Materials, 2022, 5, 3489-3501.	2.5	14
5	Synthesis and Characterization of a Magnetic Carbon Nanofiber Derived from Bacterial Cellulose for the Removal of Diclofenac from Water. ACS Omega, 2022, 7, 7572-7584.	1.6	7
6	A simple method for fabricating flexible thermoelectric nanocomposites based on bacterial cellulose nanofiber and Ag2Se. Applied Physics Letters, 2022, 120, .	1.5	15
7	Mechanical and Dielectric Properties of Fly Ash Geopolymer/Sugarcane Bagasse Ash Composites. Polymers, 2022, 14, 1140.	2.0	13
8	Correlating the effect of preparation methods on the structural and magnetic properties, and reducibility of CuFe ₂ 0 ₄ catalysts. RSC Advances, 2022, 12, 15526-15533.	1.7	3
9	Flexible supercapacitors based on mesoporous nanocrystalline cobalt ammonium phosphates and bacterial cellulose composite electrode. International Journal of Energy Research, 2021, 45, 3075-3088.	2.2	13
10	Bacterial cellulose-based magnetic nanocomposites: A review. Carbohydrate Polymers, 2021, 254, 117228.	5.1	39
11	Development of co-doped Li2S-borate-based glass system as energy storage applications: X-ray absorption spectroscopy aspect. Journal of Non-Crystalline Solids, 2021, 562, 120781.	1.5	1
12	Hard magnetic membrane based on bacterial cellulose – Barium ferrite nanocomposites. Carbohydrate Polymers, 2021, 264, 118016.	5.1	15
13	Co2P2O7 Microplate/Bacterial Cellulose–Derived Carbon Nanofiber Composites with Enhanced Electrochemical Performance. Nanomaterials, 2021, 11, 2015.	1.9	8
14	Magnetic Properties and Morphology Copper-Substituted Barium Hexaferrites from Sol-Gel Auto-Combustion Synthesis. Materials, 2021, 14, 5873.	1.3	9
15	Enhancing Thermoelectric Properties of Higher Manganese Silicide (HMS) by Partial Ta Substitution. Journal of Electronic Materials, 2020, 49, 2726-2733.	1.0	8
16	Magnetic bacterial cellulose and carbon nanofiber aerogel by simple immersion and pyrolysis. Journal of Materials Science, 2020, 55, 4113-4126.	1.7	20
17	Enhancing piezoelectric properties of bacterial cellulose films by incorporation of MnFe2O4 nanoparticles. Carbohydrate Polymers, 2020, 231, 115730.	5.1	36
18	Engineering Bacterial Cellulose Films by Nanocomposite Approach and Surface Modification for Biocompatible Triboelectric Nanogenerator. ACS Applied Electronic Materials, 2020, 2, 2498-2506.	2.0	69

SUPREE PINITSOONTORN

#	Article	IF	CITATIONS
19	Silica-coated magnesium ferrite nanoadsorbent for selective removal of methylene blue. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606, 125483.	2.3	20
20	Controlling the processing of co-precipitated magnetic bacterial cellulose/iron oxide nanocomposites. Materials and Design, 2020, 196, 109148.	3.3	25
21	Carbon Nanofiber Aerogel/Magnetic Core–Shell Nanoparticle Composites as Recyclable Oil Sorbents. ACS Applied Nano Materials, 2020, 3, 3939-3950.	2.4	44
22	Synthesis of Silicon and Higher Manganese Silicide Bulk Nano-composites and Their Thermoelectric Properties. Journal of Electronic Materials, 2020, 49, 2920-2927.	1.0	6
23	Amine-Functionalized and Hydroxyl-Functionalized Magnesium Ferrite Nanoparticles for Congo Red Adsorption. ACS Applied Nano Materials, 2019, 2, 5329-5341.	2.4	105
24	Size-Controllable Melt-Electrospun Polycaprolactone (PCL) Fibers with a Sodium Chloride Additive. Polymers, 2019, 11, 1768.	2.0	16
25	Thermoelectric Properties of Bulk Yttrium Silicide (YSi2) Fabricated by Arc Melting and Spark Plasma Sintering. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700769.	0.8	1
26	Magnetically responsive and flexible bacterial cellulose membranes. Carbohydrate Polymers, 2018, 192, 251-262.	5.1	34
27	White magnetic paper based on a bacterial cellulose nanocomposite. Journal of Materials Chemistry C, 2018, 6, 11427-11435.	2.7	30
28	Enhancing thermoelectric properties of p-type SiGe alloy through optimization of carrier concentration and processing parameters. Materials Science in Semiconductor Processing, 2018, 88, 239-249.	1.9	21
29	Electrical conductivity and compressive strength of carbon fiber reinforced fly ash geopolymeric composites. Construction and Building Materials, 2017, 135, 164-176.	3.2	76
30	Electronic structure of iron-doped misfit-layered calcium cobaltite. Computational Materials Science, 2016, 114, 64-71.	1.4	7
31	Improvement of electrochemical properties of Ca3Co4O9 as anode materials for lithium-ion batteries by Cr doping. Journal of Solid State Electrochemistry, 2015, 19, 1197-1202.	1.2	5
32	Polymer pyrolysis synthesis and magnetic properties of LaFeO3 nanoparticles. Physica B: Condensed Matter, 2015, 476, 55-60.	1.3	36
33	Structure, magnetic, and dielectric properties of Ti-doped LaFeO 3 ceramics synthesized by polymer pyrolysis method. Materials Research Bulletin, 2015, 67, 118-125.	2.7	80
34	Thermoelectric Properties of Ca3Co4-x Ga x O9+l̂´ Prepared by Thermal Hydro-decomposition. Journal of Electronic Materials, 2014, 43, 2064-2071.	1.0	8
35	First-Principles Study of the Electronic Structure and Thermoelectric Properties of Al-Doped ZnO. Journal of Electronic Materials, 2014, 43, 1689-1696.	1.0	26
36	Local structure determination of substitutional elements in Ca3Co4â^'xMxO9(M = Fe, Cr, Ga) using X-ray absorption spectroscopy. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1732-1739.	0.8	6

#	Article	IF	CITATIONS
37	Giant dielectric behavior observed in Ca3Co4O9 ceramic. Electronic Materials Letters, 2013, 9, 347-351.	1.0	5
38	Synthesis and thermoelectric properties of Ca3Co4O9 prepared by a simple thermal hydro-decomposition method. Electronic Materials Letters, 2012, 8, 305-308.	1.0	20
39	Thermoelectric properties of transition metals-doped Ca3Co3.8M0.2O9+l̂´ (MÂ=ÂCo, Cr, Fe, Ni, Cu and Zn). Journal of Materials Science: Materials in Electronics, 2012, 23, 1050-1056.	1.1	61
40	Synthesis, mechanical and magnetic properties of transition metals-doped Ca3Co3.8M0.2O9. Journal of Alloys and Compounds, 2010, 503, 431-435.	2.8	50
41	Enhanced transverse thermoelectric voltage in the Au/Ni foil bilayer system via the combination of spin Seebeck effect and anomalous Nernst effect. Physica Status Solidi (A) Applications and Materials Science, 0, , .	0.8	0