
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4751290/publications.pdf Version: 2024-02-01

FRIC POLLET

#	Article	IF	CITATIONS
1	Nano-biocomposites: Biodegradable polyester/nanoclay systems. Progress in Polymer Science, 2009, 34, 125-155.	11.8	897
2	Starch-based nano-biocomposites. Progress in Polymer Science, 2013, 38, 1590-1628.	11.8	455
3	Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion. Polymer, 2003, 44, 2271-2279.	1.8	307
4	Progress in nano-biocomposites based on polysaccharides and nanoclays. Materials Science and Engineering Reports, 2009, 67, 1-17.	14.8	267
5	Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: Effect of substrate composition and feeding regime on PHA productivity, composition and properties. Journal of Biotechnology, 2011, 151, 66-76.	1.9	244
6	Gas barrier properties of poly(?-caprolactone)/clay nanocomposites: Influence of the morphology and polymer/clay interactions. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 205-214.	2.4	167
7	Structure and properties of glycerol-plasticized chitosan obtained by mechanical kneading. Carbohydrate Polymers, 2011, 83, 947-952.	5.1	166
8	Evaluation of biological degradation of polyurethanes. Biotechnology Advances, 2020, 39, 107457.	6.0	164
9	Crystallization in Poly(l-lactide)-b-poly(ε-caprolactone) Double Crystalline Diblock Copolymers: A Study Using X-ray Scattering, Differential Scanning Calorimetry, and Polarized Optical Microscopy. Macromolecules, 2005, 38, 463-472.	2.2	152
10	Towards bio-upcycling of polyethylene terephthalate. Metabolic Engineering, 2021, 66, 167-178.	3.6	151
11	Aromatic Copolyester-based Nano-biocomposites: Elaboration, Structural Characterization and Properties. Journal of Polymers and the Environment, 2006, 14, 393-401.	2.4	148
12	Thermal and thermo-mechanical degradation of poly(3-hydroxybutyrate)-based multiphase systems. Polymer Degradation and Stability, 2008, 93, 413-421.	2.7	138
13	New Approach to Elaborate Exfoliated Starch-Based Nanobiocomposites. Biomacromolecules, 2008, 9, 896-900.	2.6	138
14	Starch nano-biocomposites based on needle-like sepiolite clays. Carbohydrate Polymers, 2010, 80, 145-153.	5.1	133
15	Properties of glycerol-plasticized alginate films obtained by thermo-mechanical mixing. Food Hydrocolloids, 2017, 63, 414-420.	5.6	131
16	Starch-based nano-biocomposites: Plasticizer impact on the montmorillonite exfoliation process. Carbohydrate Polymers, 2010, 79, 941-947.	5.1	127
17	Biodegradable Polymers. Green Energy and Technology, 2012, , 13-39.	0.4	124
18	Innovative thermoplastic chitosan obtained by thermo-mechanical mixing with polyol plasticizers. Carbohydrate Polymers, 2013, 95, 241-251.	5.1	122

#	Article	IF	CITATIONS
19	Structure and Properties of PHA/Clay Nanoâ€Biocomposites Prepared by Melt Intercalation. Macromolecular Chemistry and Physics, 2008, 209, 1473-1484.	1.1	110
20	Enzymatic recycling of thermoplastic polyurethanes: Synergistic effect of an esterase and an amidase and recovery of building blocks. Waste Management, 2019, 85, 141-150.	3.7	108
21	Melt Structure and its Transformation by Sequential Crystallization of the Two Blocks within Poly(L-lactide)-block-Poly(É>-caprolactone) Double Crystalline Diblock Copolymers. Macromolecular Chemistry and Physics, 2006, 207, 941-953.	1.1	106
22	Molten salts (ionic liquids) to improve the activity, selectivity and stability of the palladium catalysed Trost–Tsuji C–C coupling in biphasic media. Journal of Molecular Catalysis A, 1999, 145, 121-126.	4.8	97
23	Effect of clay organomodifiers on degradation of polyhydroxyalkanoates. Polymer Degradation and Stability, 2009, 94, 789-796.	2.7	97
24	Elaboration, morphology and properties of starch/polyester nano-biocomposites based on sepiolite clay. Carbohydrate Polymers, 2015, 118, 250-256.	5.1	80
25	How does water diffuse in starch/montmorillonite nano-biocomposite materials?. Carbohydrate Polymers, 2010, 82, 128-135.	5.1	79
26	Disruption of \hat{I}^2 -oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups. Applied Microbiology and Biotechnology, 2011, 89, 1583-1598.	1.7	77
27	Tailoring the Structure, Morphology, and Crystallization of Isodimorphic Poly(butylene) Tj ETQq1 1 0.784314 rgB History. Macromolecules, 2017, 50, 597-608.	[/Overlock 2.2	2 10 Tf 50 4 77
28	lsolation and characterization of different promising fungi for biological waste management of polyurethanes. Microbial Biotechnology, 2019, 12, 544-555.	2.0	75
29	Controlled Polymer Grafting on Single Clay Nanoplatelets. Journal of the American Chemical Society, 2004, 126, 9007-9012.	6.6	70
30	Physical properties of poly(ε-caprolactone) layered silicate nanocomposites prepared by controlled grafting polymerization. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1466-1475.	2.4	67
31	Micromechanical modeling and characterization of the effective properties in starch-based nano-biocomposites. Acta Biomaterialia, 2008, 4, 1707-1714.	4.1	66
32	Sepiolite as a promising nanoclay for nano-biocomposites based on starch and biodegradable polyester. Materials Science and Engineering C, 2017, 70, 296-302.	3.8	65
33	Original method for synthesis of chitosan-based antimicrobial agent by quaternary ammonium grafting. Carbohydrate Polymers, 2017, 157, 1922-1932.	5.1	64
34	Preparation and Characterization of Thermoplastic Potato Starch/Halloysite Nano-Biocomposites: Effect of Plasticizer Nature and Nanoclay Content. Polymers, 2018, 10, 808.	2.0	53
35	Surface Characterization of Poly(ε-caprolactone)-Based Nanocomposites. Langmuir, 2003, 19, 9425-9433.	1.6	52
36	Synthesis and characterization of biobased poly(butylene succinate- ran -butylene adipate). Analysis of the composition-dependent physicochemical properties. European Polymer Journal, 2017, 87, 84-98.	2.6	52

#	Article	IF	CITATIONS
37	Morphological, thermal, and mechanical properties of poly(εâ€caprolactone)/poly(εâ€caprolactone)â€graftedâ€cellulose nanocrystals mats produced by electrospinning. Journal of Applied Polymer Science, 2016, 133, .	1.3	50
38	Nonisothermal crystallization behavior of poly(butylene adipate-co-terephthalate)/clay nano-biocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1503-1510.	2.4	48
39	Transesterification catalysts to improve clay exfoliation in synthetic biodegradable polyester nanocomposites. European Polymer Journal, 2006, 42, 1330-1341.	2.6	46
40	Elaboration and properties of novel biobased nanocomposites with halloysite nanotubes and thermoplastic polyurethane from dimerized fatty acids. Polymer, 2014, 55, 5226-5234.	1.8	46
41	Effect of TiO2 nanoparticles on the properties of thermoplastic chitosan-based nano-biocomposites obtained by mechanical kneading. Composites Part A: Applied Science and Manufacturing, 2017, 93, 33-40.	3.8	46
42	Elaboration and properties of plasticised chitosan-based exfoliated nano-biocomposites. Polymer, 2013, 54, 3654-3662.	1.8	44
43	Synthesis of potentially biobased copolyesters based on adipic acid and butanediols: Kinetic study between 1,4- and 2,3-butanediol and their influence on crystallization and thermal properties. Polymer, 2016, 99, 204-213.	1.8	44
44	Role of Tryptophan Oxidation in Peroxynitrite-Dependent Protein Chemiluminescence. Archives of Biochemistry and Biophysics, 1998, 349, 74-80.	1.4	41
45	Morphology and properties of thermoplastic starch blended with biodegradable polyester and filled with halloysite nanoclay. Carbohydrate Polymers, 2020, 242, 116392.	5.1	41
46	Study on the structure-properties relationship of biodegradable and biobased aliphatic copolyesters based on 1,3-propanediol, 1,4-butanediol, succinic and adipic acids. Polymer, 2017, 122, 105-116.	1.8	38
47	Itaconic and Fumaric Acid Production from Biomass Hydrolysates by Aspergillus Strains. Journal of Microbiology and Biotechnology, 2016, 26, 1557-1565.	0.9	37
48	Elaboration and Characterization of Nano-Biocomposites Based on Plasticized Poly(Hydroxybutyrate-Co-Hydroxyvalerate) with Organo-Modified Montmorillonite. Journal of Polymers and the Environment, 2012, 20, 283-290.	2.4	36
49	Innovative plasticized alginate obtained by thermo-mechanical mixing: Effect of different biobased polyols systems. Carbohydrate Polymers, 2017, 157, 669-676.	5.1	36
50	Fungal Fermentation of Lignocellulosic Biomass for Itaconic and Fumaric Acid Production. Journal of Microbiology and Biotechnology, 2017, 27, 1-8.	0.9	36
51	Biorenewable nanocomposites. MRS Bulletin, 2011, 36, 703-710.	1.7	35
52	Enzymatic Synthesis of a Bio-Based Copolyester from Poly(butylene succinate) and Poly((<i>R</i>)-3-hydroxybutyrate): Study of Reaction Parameters on the Transesterification Rate. Biomacromolecules, 2016, 17, 4054-4063.	2.6	34
53	Plastic Biodegradation: Challenges and Opportunities. , 2018, , 1-29.		33
54	Biotic and Abiotic Synthesis of Renewable Aliphatic Polyesters from Short Building Blocks Obtained from Biotechnology. ChemSusChem, 2018, 11, 3836-3870.	3.6	33

#	Article	IF	CITATIONS
55	Breakthrough in polyurethane bio-recycling: An efficient laccase-mediated system for the degradation of different types of polyurethanes. Waste Management, 2021, 132, 23-30.	3.7	33
56	MIXed plastics biodegradation and UPcycling using microbial communities: EU Horizon 2020 project MIX-UP started January 2020. Environmental Sciences Europe, 2021, 33, 99.	2.6	33
57	Polymer layered silicate/carbon nanotube nanocomposites: The catalyzed polymerization approach. Polymer Engineering and Science, 2006, 46, 1022-1030.	1.5	32
58	Enzymatic synthesis of poly(ε-caprolactone- co -ε-thiocaprolactone). European Polymer Journal, 2017, 87, 147-158.	2.6	31
59	Glycerol plasticised chitosan: A study of biodegradation via carbon dioxide evolution and nuclear magnetic resonance. Polymer Degradation and Stability, 2013, 98, 1236-1246.	2.7	30
60	Polyhydroxyalkanoates: Waste glycerol upgrade into electrospun fibrous scaffolds for stem cells culture. International Journal of Biological Macromolecules, 2014, 71, 131-140.	3.6	29
61	Novative Biomaterials Based on Chitosan and Poly(ε-Caprolactone): Elaboration of Porous Structures. Journal of Polymers and the Environment, 2011, 19, 819-826.	2.4	28
62	Lipase catalyzed synthesis of polycaprolactone and clay-based nanohybrids. Polymer, 2014, 55, 1648-1655.	1.8	27
63	Synthesis and characterization of block poly(esterâ€etherâ€urethane)s from bacterial poly(3â€hydroxybutyrate) oligomers. Journal of Polymer Science Part A, 2017, 55, 1949-1961.	2.5	26
64	Mixed systems to assist enzymatic ring opening polymerization of lactide stereoisomers. RSC Advances, 2015, 5, 84627-84635.	1.7	25
65	Green Recycling Process for Polyurethane Foams by a Chemâ€Biotech Approach. ChemSusChem, 2021, 14, 4234-4241.	3.6	25
66	Enzymatic ring-opening (co)polymerization of lactide stereoisomers catalyzed by lipases. Toward the in situ synthesis of organic/inorganic nanohybrids. Journal of Molecular Catalysis B: Enzymatic, 2015, 115, 20-28.	1.8	24
67	Organic-Inorganic Nanohybrids Obtained by Sequential Copolymerization of?-Caprolactone andL,L-Lactide from Activated Clay Surface. Macromolecular Chemistry and Physics, 2004, 205, 2235-2244.	1.1	23
68	Nanoclays for Lipase Immobilization: Biocatalyst Characterization and Activity in Polyester Synthesis. Polymers, 2016, 8, 416.	2.0	22
69	Green Nano-Biocomposites. Green Energy and Technology, 2012, , 1-11.	0.4	21
70	Optimized Bioproduction of Itaconic and Fumaric Acids Based on Solid-State Fermentation of Lignocellulosic Biomass. Molecules, 2020, 25, 1070.	1.7	21
71	Crystallinity study of nano-biocomposites based on plasticized poly(hydroxybutyrate-co-hydroxyvalerate) with organo-modified montmorillonite. Polymer Testing, 2013, 32, 1253-1260.	2.3	20
72	Anionic ring opening polymerization of oxygenated heterocycles with supported Zirconium and rare earths alkoxides as initiators in protic conditions. Towards a catalytic heterogeneous process. Macromolecular Symposia, 2000, 153, 275-286.	0.4	18

#	Article	IF	CITATIONS
73	Biological properties of novel polysuccinimide derivatives synthesized via quaternary ammonium grafting. European Polymer Journal, 2020, 131, 109705.	2.6	17
74	Lipase-catalyzed synthesis of biobased and biodegradable aliphatic copolyesters from short building blocks. Effect of the monomer length. European Polymer Journal, 2017, 97, 328-337.	2.6	16
75	Isolation of Low Dispersity Fractions of Acetone Organosolv Lignins to Understand their Reactivity: Towards Aromatic Building Blocks for Polymers Synthesis. ChemSusChem, 2021, 14, 387-397.	3.6	16
76	Star-Pseudopolyrotaxane Organized in Nanoplatelets for Poly(Îμ-caprolactone)-Based Nanofibrous Scaffolds with Enhanced Surface Reactivity. Macromolecular Rapid Communications, 2015, 36, 292-297.	2.0	15
77	Elaboration and behavior of poly(3-hydroxybutyrate- co -4-hydroxybutyrate)- nano-biocomposites based on montmorillonite or sepiolite nanoclays. European Polymer Journal, 2016, 81, 64-76.	2.6	15
78	Enzymatic synthesis of biobased poly(1,4-butylene succinate-ran-2,3-butylene succinate) copolyesters and characterization. Influence of 1,4- and 2,3-butanediol contents. European Polymer Journal, 2017, 93, 103-115.	2.6	15
79	Nanocomposites based on renewable thermoplastic polyurethane and chemically modified cellulose nanocrystals with improved mechanical properties. Journal of Applied Polymer Science, 2018, 135, 46736.	1.3	15
80	Advanced Nano-biocomposites Based on Starch. , 2014, , 1-75.		14
81	Lipase-catalyzed synthesis of furan-based aliphatic-aromatic biobased copolyesters: Impact of the solvent. European Polymer Journal, 2021, 159, 110717.	2.6	13
82	EDCâ€Mediated Grafting of Quaternary Ammonium Salts onto Chitosan for Antibacterial and Thermal Properties Improvement. Macromolecular Chemistry and Physics, 2019, 220, 1800530.	1.1	12
83	Effect of Oligo-Hydroxyalkanoates on Poly(3-Hydroxybutyrate- <i>co</i> -4-Hydroxybutyrate)-Based Systems. Macromolecular Materials and Engineering, 2015, 300, 661-666.	1.7	10
84	The study of the pseudo-polyrotaxane architecture as a route for mild surface functionalization by click chemistry of poly(Îμ-caprolactone)-based electrospun fibers. Journal of Materials Chemistry B, 2017, 5, 2181-2189.	2.9	9
85	Titanium-catalyzed transesterification as a route to the synthesis of fully biobased poly(3-hydroxybutyurate- co -butylene dicarboxylate) copolyesters, from their homopolyesters. European Polymer Journal, 2017, 90, 92-104.	2.6	9
86	Synthesis and characterization of fully biobased poly(propylene succinateâ€ranâ€propylene adipate). Analysis of the architectureâ€dependent physicochemical behavior. Journal of Polymer Science Part A, 2017, 55, 2738-2748.	2.5	9
87	Enzymatic Synthesis of Amino Acids Endcapped Polycaprolactone: A Green Route Towards Functional Polyesters. Molecules, 2018, 23, 290.	1.7	9
88	On the heterogeneous composition of bacterial polyhydroxyalkanoate terpolymers. Bioresource Technology, 2013, 147, 434-441.	4.8	8
89	Original Macromolecular Architectures Based on poly(ε-caprolactone) and poly(ε-thiocaprolactone) Grafted onto Chitosan Backbone. International Journal of Molecular Sciences, 2018, 19, 3799.	1.8	8
90	Melt processing of nanocomposites of cellulose nanocrystals with biobased thermoplastic polyurethane. Journal of Applied Polymer Science, 2021, 138, 50343.	1.3	8

ERIC POLLET

#	Article	IF	CITATIONS
91	Heterogeneous anionic ring opening polymerization in a fixed-bed reactor: description of the process and modelling. Polymer International, 2004, 53, 550-556.	1.6	7
92	Nanobiocomposites Based on Plasticized Starch. , 2014, , 211-239.		7
93	Characterization of the enzymatic degradation of polyurethanes. Methods in Enzymology, 2021, 648, 317-336.	0.4	7
94	New Aliphatic Polyester Layered-Silicate Nanocomposites. , 2003, , 327-350.		7
95	Ferulic Acid as Building Block for the Lipase-Catalyzed Synthesis of Biobased Aromatic Polyesters. Polymers, 2021, 13, 3693.	2.0	7
96	Study of the water sorption and barrier performances of potato starch nano-biocomposites based on halloysite nanotubes. Carbohydrate Polymers, 2022, 277, 118805.	5.1	7
97	Combination of a Monte Carlo approach with the contact time distribution concept for the steady-state modeling of an isothermal heterogeneous coordinated anionic ring opening polymerization reactor. Chemical Engineering Science, 2003, 58, 1509-1519.	1.9	6
98	Shear induced clay organoâ€modification: application to plasticized starch nanoâ€biocomposites. Polymers for Advanced Technologies, 2010, 21, 578-583.	1.6	6
99	Micromechanically-Based Formulation of the Cooperative Model for the Yield Behavior of Starch-Based Nano-Biocomposites. Journal of Nanoscience and Nanotechnology, 2010, 10, 2949-2955.	0.9	6
100	Synthesis of Bio-Based Photo-Cross-Linkable Polyesters Based on Caffeic Acid through Selective Lipase-Catalyzed Polymerization. Macromolecules, 0, , .	2.2	5
101	Advanced Nano-biocomposites Based on Starch. , 2015, , 1467-1553.		4
102	Novel multiphase systems based on thermoplastic chitosan: Analysis of the structure-properties relationships. AIP Conference Proceedings, 2016, , .	0.3	3
103	Polyhydroxyalkanoate-based Multiphase Materials. RSC Green Chemistry, 2014, , 119-140.	0.0	2
104	Clay Nano-Biocomposites Based on PBAT Aromatic Copolyesters. Green Energy and Technology, 2012, , 219-235.	0.4	1
105	Synthesis, characterization, and antibacterial activities of novel starch derivatives against <i>E. coli</i> and <i>S.Âaureus</i> . Starch/Staerke, 2022, 74, .	1.1	1
106	Meet our Authors. MRS Bulletin, 2011, 36, 693-694.	1.7	0
107	BIOPOL-2011 Special Issue. Polymer Degradation and Stability, 2012, 97, 1851.	2.7	0