Flavio Arienti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4750683/publications.pdf Version: 2024-02-01

FLAVIO ADIENTI

#	Article	IF	CITATIONS
1	Back to simplicity: a four-marker blood cell score to quantify prognostically relevant myeloid cells in melanoma patients. , 2021, 9, e001167.		11
2	Shear-Induced Encapsulation into Red Blood Cells: A New Microfluidic Approach to Drug Delivery. Annals of Biomedical Engineering, 2020, 48, 236-246.	1.3	11
3	Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma. Journal of Clinical Investigation, 2018, 128, 5505-5516.	3.9	193
4	Adaptive Immunity in Fibrosarcomatous Dermatofibrosarcoma Protuberans and Response to Imatinib Treatment. Journal of Investigative Dermatology, 2017, 137, 484-493.	0.3	29
5	A Supportive Care in Cancer Unit Reduces Costs and Hospitalizations for Transfusions in a Comprehensive Cancer Center. Tumori, 2017, 103, 449-456.	0.6	9
6	Application of Controlled Shear Stresses on the Erythrocyte Membrane as a New Approach to Promote Molecule Encapsulation. Artificial Organs, 2016, 40, 959-970.	1.0	7
7	Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b. Oncotarget, 2016, 7, 4428-4441.	0.8	84
8	Biological quality control for extracorporeal photochemotherapy: Assessing mononuclear cell apoptosis levels in ECP bags of chronic GvHD patients. Journal of Clinical Apheresis, 2015, 30, 162-170.	0.7	16
9	Epidural analgesia for cytoreductive surgery with peritonectomy and heated intraperitoneal chemotherapy. International Journal of Surgery, 2015, 16, 99-106.	1.1	22
10	Transcriptional Profiling of Melanoma Sentinel Nodes Identify Patients with Poor Outcome and Reveal an Association of CD30+ T Lymphocytes with Progression. Cancer Research, 2014, 74, 130-140.	0.4	27
11	Predictors of CD34+ Cell Mobilization and Collection in Adult Men With Germ Cell Tumors: Implications for the Salvage Treatment Strategy. Clinical Genitourinary Cancer, 2014, 12, 196-202.e1.	0.9	3
12	Alternative Activation of Human Plasmacytoid DCs In Vitro and in Melanoma Lesions: Involvement of LAG-3. Journal of Investigative Dermatology, 2014, 134, 1893-1902.	0.3	74
13	Successful second autologous engraftment after long duration storage of hematopoietic stem cells. Bone Marrow Transplantation, 2013, 48, 1480-1481.	1.3	2
14	Tumor-Reactive CD8+ Early Effector T Cells Identified at Tumor Site in Primary and Metastatic Melanoma. Cancer Research, 2010, 70, 8378-8387.	0.4	52
15	Impaired STAT Phosphorylation in T Cells from Melanoma Patients in Response to IL-2: Association with Clinical Stage. Clinical Cancer Research, 2009, 15, 4085-4094.	3.2	29
16	Human Plasmacytoid Dendritic Cells Interact with gp96 via CD91 and Regulate Inflammatory Responses. Journal of Immunology, 2008, 181, 6525-6535.	0.4	24
17	Induction of Both CD8+ and CD4+ T-Cell–Mediated Responses in Colorectal Cancer Patients by Colon Antigen-1. Clinical Cancer Research, 2008, 14, 7292-7303	3.2	10
18	Detection of mutated BRAFV600E variant in circulating DNA of stage Ill–IV melanoma patients. International Journal of Cancer, 2007, 120, 2439-2444.	2.3	76

FLAVIO ARIENTI

#	Article	IF	CITATIONS
19	A phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes Gp96, in combination with GM-CSF and interferon-α in metastatic melanoma patients. Cancer Immunology, Immunotherapy, 2006, 55, 958-968.	2.0	134
20	Peripheral blood stem cell collection in pediatric patients: Feasibility of leukapheresis under anesthesia in uncompliant small children with solid tumors. Journal of Clinical Apheresis, 2006, 21, 85-91.	0.7	13
21	Soluble Human LAG-3 Molecule Amplifies the In vitro Generation of Type 1 Tumor-Specific Immunity. Cancer Research, 2006, 66, 4450-4460.	0.4	52
22	lmmunization of Stage IV Melanoma Patients with Melan-A/MART-1 and gp100 Peptides plus IFN-α Results in the Activation of Specific CD8+ T Cells and Monocyte/Dendritic Cell Precursors. Cancer Research, 2006, 66, 4943-4951.	0.4	108
23	Role of Cross-Talk between IFN-α-Induced Monocyte-Derived Dendritic Cells and NK Cells in Priming CD8+ T Cell Responses against Human Tumor Antigens. Journal of Immunology, 2004, 172, 5363-5370.	0.4	103
24	Vaccination of Metastatic Melanoma Patients With Autologous Tumor-Derived Heat Shock Protein gp96-Peptide Complexes: Clinical and Immunologic Findings. Journal of Clinical Oncology, 2002, 20, 4169-4180.	0.8	361
25	Vaccination of Stage IV patients with allogeneic IL-4- or IL-2-gene-transduced melanoma cells generates functional antibodies against vaccinating and autologous melanoma cells. Cancer Immunology, Immunotherapy, 2002, 51, 9-14.	2.0	38
26	Gene Therapy in Melanoma. , 2001, 61, 203-222.		2
27	Vaccination of Melanoma Patients with Interleukin 4 Gene-Transduced Allogeneic Melanoma Cells. Human Gene Therapy, 1999, 10, 2907-2916.	1.4	61
28	Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by geneMAGE-3 and presented by HLA-A1. International Journal of Cancer, 1999, 80, 219-230.	2.3	667
29	Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MACE3 and presented by HLAâ€A1. International Journal of Cancer, 1999, 80, 219-230.	2.3	13
30	Induction and functional characterization of β 2-microglobulin (β2-μ)-free HLA class I heavy chains expressed by β2-μ-deficient human FO-1 melanoma cells. European Journal of Immunology, 1998, 28, 2817-2826.	1.6	18
31	beta2-Microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma Journal of Clinical Investigation, 1998, 101, 2720-2729.	3.9	151
32	Recognition of Melanoma-Derived Antigens by CTL: Possible Mechanisms Involved in Down-Regulating Anti-Tumor T-Cell Reactivity. Critical Reviews in Immunology, 1998, 18, 55-63.	1.0	23
33	Cytokine Gene Transduction in the Immunotherapy of Cancer. Advances in Pharmacology, 1997, 40, 259-307.	1.2	43
34	Comparison of three different methods for radiolabelling human activated T lymphocytes. European Journal of Nuclear Medicine and Molecular Imaging, 1997, 24, 497-504.	2.2	72
35	Active immunization of metastatic melanoma patients with interleukin-2-transduced allogeneic melanoma cells: evaluation of efficacy and tolerability. Cancer Immunology, Immunotherapy, 1997, 44, 197-203.	2.0	67
36	Comparison of three different methods for radiolabelling human activated T lymphocytes. European Journal of Nuclear Medicine and Molecular Imaging, 1997, 24, 497-504.	3.3	12

FLAVIO ARIENTI

#	Article	IF	CITATIONS
37	Differences in Frequency Distribution of HLA-A2 Subtypes Between North American and Italian White Melanoma Patients: Relevance for Epitope Specific Vaccination Protocols. Journal of Immunotherapy, 1996, 19, 357-363.	1.2	43
38	Limited Antitumor T Cell Response in Melanoma Patients Vaccinated with Interleukin-2 Gene-Transduced Allogeneic Melanoma Cells. Human Gene Therapy, 1996, 7, 1955-1963.	1.4	83
39	A B7-1-transfected human melanoma line stimulates proliferation and cytotoxicity of autologous and allogeneic lymphocytes. European Journal of Immunology, 1995, 25, 2737-2742.	1.6	48
40	Expression ofMAGE genes in primary and metastatic cutaneous melanoma. International Journal of Cancer, 1995, 63, 375-380.	2.3	261
41	Tumor regression responses in melanoma patients treated with a peptide encoded by gene MAGESâ€3. International Journal of Cancer, 1995, 63, 883-885.	2.3	394
42	Isolation perfusion in extracorporeal circulation with interleukin-2 and lymphokine-activated killer cells in the treatment of in-transit metastases from limb cutaneous melanoma. Annals of Surgical Oncology, 1995, 2, 61-70.	0.7	14
43	A Human Melanoma Cell Line Transduced with an Interleukin-4 Gene by a Retroviral Vector Releases Biologically Active IL-4 and Maintains the Original Tumor Antigenic Phenotype. Human Gene Therapy, 1995, 6, 1427-1436.	1.4	13
44	Regression of Advanced Ovarian Carcinoma by Intraperitoneal Treatment With Autologous TLymphocytes Retargeted by a Bispecific Monoclonal Antibody. Journal of the National Cancer Institute, 1995, 87, 1463-1469.	3.0	178
45	Interleukin-Gene-Transduced Human Melanoma Cells Efficiently Stimulate MHC-Unrestricted and MHC-Restricted Autologous Lymphocytes. Human Gene Therapy, 1994, 5, 1139-1150.	1.4	44
46	Active Immunization of Metastatic Melanoma Patients with Interleukin-4 Transduced, Allogeneic Melanoma Cells. A Phase I–II Study. University of Turin, Italy. Human Gene Therapy, 1994, 5, 1059-1064.	1.4	30
47	Adoptive immunotherapy of advanced melanoma patients with interleukin-2 (IL-2) and tumor-infiltrating lymphocytes selected in vitro with low doses of IL-2. Cancer Immunology, Immunotherapy, 1993, 36, 315-322.	2.0	57
48	Neuropsychological and neurophysiological assessment of the central effects of interleukin-2 administration. European Journal of Cancer, 1993, 29, 1266-1269.	1.3	45
49	Phenotypic and functional analysis of lymphocytes infiltrating paediatric tumours, with a characterization of the tumour phenotype. Cancer Immunology, Immunotherapy, 1992, 34, 241-251.	2.0	42
50	The high lysability by lak cells of colon-carcinoma cells resistant to doxorubicin is associated with a high expression of ICAM-1, LFA-3, NCA and a less-differentiated phenotype. International Journal of Cancer, 1991, 47, 746-754.	2.3	52