Ming-yi Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/475065/publications.pdf

Version: 2024-02-01

331670 345221 4,405 36 21 36 h-index citations g-index papers 37 37 37 4618 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Integrated regulation of periclinal cell division by transcriptional module of BZR1â€SHR in <i>Arabidopsis</i> roots. New Phytologist, 2022, 233, 795-808.	7.3	13
2	TOR and SnRK1 fine tune SPEECHLESS transcription and protein stability to optimize stomatal development in response to exogenously supplied sugar. New Phytologist, 2022, 234, 107-121.	7.3	17
3	The CCCH zinc finger protein C3H15 negatively regulates cell elongation by inhibiting brassinosteroid signaling. Plant Physiology, 2022, 189, 285-300.	4.8	10
4	TOR promotes guard cell starch degradation by regulating the activity of \hat{l}^2 -AMYLASE1 in Arabidopsis. Plant Cell, 2022, 34, 1038-1053.	6.6	16
5	Brassinosteroid signaling restricts root lignification by antagonizing SHORT-ROOT function in Arabidopsis. Plant Physiology, 2022, 190, 1182-1198.	4.8	8
6	HBI1â€TCP20 interaction positively regulates the CEPsâ€mediated systemic nitrate acquisition. Journal of Integrative Plant Biology, 2021, 63, 902-912.	8.5	14
7	HBI transcription factor-mediated ROS homeostasis regulates nitrate signal transduction. Plant Cell, 2021, 33, 3004-3021.	6.6	37
8	The BZR1-EDS1 module regulates plant growth-defense coordination. Molecular Plant, 2021, 14, 2072-2087.	8.3	11
9	BZR1 Physically Interacts with SPL9 to Regulate the Vegetative Phase Change and Cell Elongation in Arabidopsis. International Journal of Molecular Sciences, 2021, 22, 10415.	4.1	11
10	Interaction between BZR1 and EIN3 mediates signalling crosstalk between brassinosteroids and ethylene. New Phytologist, 2021, 232, 2308-2323.	7.3	25
11	Brassinosteroid homeostasis is critical for the functionality of the <i>Medicago truncatula</i> pulvinus. Plant Physiology, 2021, 185, 1745-1763.	4.8	8
12	Gibberellin repression of axillary bud formation in <i>Arabidopsis</i> by modulation of DELLAâ€SPL9 complex activity. Journal of Integrative Plant Biology, 2020, 62, 421-432.	8.5	47
13	Cyclophilin OsCYP20â€⊋ with a novel variant integrates defense and cell elongation for chilling response in rice. New Phytologist, 2020, 225, 2453-2467.	7.3	19
14	Brassinosteroids Antagonize Jasmonate-Activated Plant Defense Responses through BRI1-EMS-SUPPRESSOR1 (BES1). Plant Physiology, 2020, 182, 1066-1082.	4.8	48
15	Phospho-Mutant Activity Assays Provide Evidence for the Negative Regulation of Transcriptional Regulator PRE1 by Phosphorylation. International Journal of Molecular Sciences, 2020, 21, 9183.	4.1	1
16	KIN10 promotes stomatal development through stabilization of the SPEECHLESS transcription factor. Nature Communications, 2020, 11, 4214.	12.8	48
17	The miR396-GRFs Module Mediates the Prevention of Photo-oxidative Damage by Brassinosteroids during Seedling De-Etiolation in Arabidopsis. Plant Cell, 2020, 32, 2525-2542.	6.6	28
18	Brassinosteroid and Hydrogen Peroxide Interdependently Induce Stomatal Opening by Promoting Guard Cell Starch Degradation. Plant Cell, 2020, 32, 984-999.	6.6	45

#	Article	IF	CITATIONS
19	A GmSIN1/GmNCED3s/GmRbohBs Feed-Forward Loop Acts as a Signal Amplifier That Regulates Root Growth in Soybean Exposed to Salt Stress. Plant Cell, 2019, 31, 2107-2130.	6.6	87
20	GmBZL3 acts as a major BR signaling regulator through crosstalk with multiple pathways in Glycine max. BMC Plant Biology, 2019, 19, 86.	3.6	10
21	<i>AGLF</i> provides C-function in floral organ identity through transcriptional regulation of <i>AGAMOUS</i> in <i>Medicago truncatula</i> Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5176-5181.	7.1	20
22	Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nature Communications, 2018, 9, 1063.	12.8	169
23	Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Genetics, 2018, 14, e1007144.	3.5	152
24	Auxin-BR Interaction Regulates Plant Growth and Development. Frontiers in Plant Science, 2017, 8, 2256.	3.6	92
25	Diverse roles of SERK family genes in plant growth, development and defense response. Science China Life Sciences, 2016, 59, 889-896.	4.9	17
26	Repression of callus initiation by the mi <scp>RNA</scp> â€directed interaction of auxin–cytokinin in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 87, 391-402.	5.7	56
27	Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. ELife, 2014, 3, .	6.0	464
28	The bHLH Transcription Factor HBI1 Mediates the Trade-Off between Growth and Pathogen-Associated Molecular Pattern–Triggered Immunity in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 828-841.	6.6	191
29	The brassinosteroid signaling network â€" a paradigm of signal integration. Current Opinion in Plant Biology, 2014, 21, 147-153.	7.1	135
30	A Triple Helix-Loop-Helix/Basic Helix-Loop-Helix Cascade Controls Cell Elongation Downstream of Multiple Hormonal and Environmental Signaling Pathways in <i>Arabidopsis</i> ÂÂ. Plant Cell, 2013, 24, 4917-4929.	6.6	197
31	BZS1, a B-box Protein, Promotes Photomorphogenesis Downstream of Both Brassinosteroid and Light Signaling Pathways. Molecular Plant, 2012, 5, 591-600.	8.3	131
32	Brassinosteroids regulate organ boundary formation in the shoot apical meristem of <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21152-21157.	7.1	156
33	Brassinosteroid Signaling Network and Regulation of Photomorphogenesis. Annual Review of Genetics, 2012, 46, 701-724.	7.6	410
34	Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology, 2012, 14, 810-817.	10.3	549
35	Integration of Brassinosteroid Signal Transduction with the Transcription Network for Plant Growth Regulation in Arabidopsis. Developmental Cell, 2010, 19, 765-777.	7.0	790
36	Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13839-13844.	7.1	362