Stefan Wiemer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4750644/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Saint-Ursanne earthquakes of 2000 revisited: evidence for active shallow thrust-faulting in the Jura fold-and-thrust belt. Swiss Journal of Geosciences, 2022, 115, .	1.2	5
2	Multi-disciplinary characterizations of the BedrettoLab – a new underground geoscience research facility. Solid Earth, 2022, 13, 301-322.	2.8	17
3	Comment on "High-Definition Mapping of the Gutenberg–Richter <i>b</i> -Value and Its Relevance: A Case Study in Italy―by M. Taroni, J. Zhuang, and W. Marzocchi. Seismological Research Letters, 2022, 93, 1089-1094.	1.9	4
4	A discrete fracture hybrid model for forecasting diffusion-induced seismicity and power generation in enhanced geothermal systems. Geophysical Journal International, 2022, 230, 84-113.	2.4	2
5	A Methodology for Reconstructing Source Properties of a Conical Piezoelectric Actuator Using Array-Based Methods. Journal of Nondestructive Evaluation, 2022, 41, 23.	2.4	4
6	Loss-Based Performance Assessment and Seismic Network Optimization for Earthquake Early Warning. Bulletin of the Seismological Society of America, 2022, 112, 1662-1677.	2.3	8
7	A multibranch, multitarget neural network for rapid point-source inversion in a microseismic environment: examples from the Hengill Geothermal Field, Iceland. Geophysical Journal International, 2022, 229, 999-1016.	2.4	8
8	MALMI: An Automated Earthquake Detection and Location Workflow Based on Machine Learning and Waveform Migration. Seismological Research Letters, 2022, 93, 2467-2483.	1.9	18
9	Monitoring microseismicity of the Hengill Geothermal Field in Iceland. Scientific Data, 2022, 9, 220.	5.3	9
10	Combined Large- <i>N</i> Seismic Arrays and DAS Fiber Optic Cables across the Hengill Geothermal Field, Iceland. Seismological Research Letters, 2022, 93, 2498-2514.	1.9	5
11	Earthquakes in Switzerland and surrounding regions during 2017 and 2018. Swiss Journal of Geosciences, 2021, 114, .	1.2	17
12	Metre-scale stress heterogeneities and stress redistribution drive complex fracture slip and fracture growth during a hydraulic stimulation experiment. Geophysical Journal International, 2021, 225, 1689-1703.	2.4	8
13	The Effect of Declustering on the Size Distribution of Mainshocks. Seismological Research Letters, 2021, 92, 2333-2342.	1.9	39
14	Fault sealing and caprock integrity for CO ₂ storage: an in situ injection experiment. Solid Earth, 2021, 12, 319-343.	2.8	32
15	Chemoâ€Mechanical Coupling in Fractured Shale With Water and Hydrocarbon Flow. Geophysical Research Letters, 2021, 48, e2020GL091357.	4.0	6
16	Shale fault zone structure and stress dependent anisotropic permeability and seismic velocity properties (Opalinus Clay, Switzerland). Journal of Structural Geology, 2021, 144, 104273.	2.3	17
17	Comment on "Two Foreshock Sequences Post Gulia and Wiemer (2019)―by Kelian Dascher-Cousineau, Thorne Lay, and Emily E. Brodsky. Seismological Research Letters, 2021, 92, 3251-3258.	1.9	9
18	Soft stimulation treatment of geothermal well RV-43 to meet the growing heat demand of Reykjavik. Geothermics, 2021, 96, 102146.	3.4	5

#	Article	IF	CITATIONS
19	Imaging high-temperature geothermal reservoirs with ambient seismic noise tomography, a case study of the Hengill geothermal field, SW Iceland. Geothermics, 2021, 96, 102207.	3.4	14
20	Embracing Data Incompleteness for Better Earthquake Forecasting. Journal of Geophysical Research: Solid Earth, 2021, 126, .	3.4	11
21	Hydraulic stimulation and fluid circulation experiments in underground laboratories: Stepping up the scale towards engineered geothermal systems. Geomechanics for Energy and the Environment, 2020, 24, 100175.	2.5	55
22	Combined approach of poroelastic and earthquake nucleation applied to the reservoir-induced seismic activity in the Val d'Agri area, Italy. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12, 802-810.	8.1	17
23	Influence of reservoir geology on seismic response during decameter-scale hydraulic stimulations in crystalline rock. Solid Earth, 2020, 11, 627-655.	2.8	33
24	Anecdotal Evidence Is An Insufficient Basis for Designing Earthquake Preparedness Campaigns. Seismological Research Letters, 2020, 91, 1929-1935.	1.9	11
25	Induced seismicity risk analysis of the hydraulic stimulation of a geothermal well on Geldinganes, Iceland. Natural Hazards and Earth System Sciences, 2020, 20, 1573-1593.	3.6	23
26	A workflow for the rapid assessment of the landslide-tsunami hazard in peri-alpine lakes. Geological Society Special Publication, 2020, 500, 81-95.	1.3	12
27	Pseudoprospective Evaluation of the Foreshock Traffic-Light System in Ridgecrest and Implications for Aftershock Hazard Assessment. Seismological Research Letters, 2020, 91, 2828-2842.	1.9	22
28	Hydromechanical Modeling of Fault Reactivation in the St.ÂGallen Deep Geothermal Project (Switzerland): Poroelasticity or Hydraulic Connection?. Geophysical Research Letters, 2020, 47, e2019GL085201.	4.0	15
29	Potential influence of overpressurized gas on the induced seismicity in the St.ÂGallen deep geothermal project (Switzerland). Solid Earth, 2020, 11, 909-933.	2.8	6
30	A Simplified Classification of the Relative Tsunami Potential in Swiss Perialpine Lakes Caused by Subaqueous and Subaerial Mass-Movements. Frontiers in Earth Science, 2020, 8, .	1.8	4
31	Forecasting the Rates of Future Aftershocks of All Generations Is Essential to Develop Better Earthquake Forecast Models. Journal of Geophysical Research: Solid Earth, 2019, 124, 8404-8425.	3.4	15
32	Fault Stability Perturbation by Thermal Pressurization and Stress Transfer Around a Deep Geological Repository in a Clay Formation. Journal of Geophysical Research: Solid Earth, 2019, 124, 8506-8518.	3.4	23
33	Rupture Process of the <i>M</i> _{<i>w</i>} 3.3 Earthquake in the St. Gallen 2013 Geothermal Reservoir, Switzerland. Geophysical Research Letters, 2019, 46, 7990-7999.	4.0	10
34	Simultaneous Dependence of the Earthquake‣ize Distribution on Faulting Style and Depth. Geophysical Research Letters, 2019, 46, 11044-11053.	4.0	10
35	The influence of faulting style on the size-distribution of global earthquakes. Earth and Planetary Science Letters, 2019, 527, 115791.	4.4	36
36	A Consistent Highâ€Resolution Catalog of Induced Seismicity in Basel Based on Matched Filter Detection and Tailored Postâ€Processing. Journal of Geophysical Research: Solid Earth, 2019, 124, 8449-8477.	3.4	37

#	Article	IF	CITATIONS
37	Foreshocks and Their Potential Deviation from General Seismicity. Bulletin of the Seismological Society of America, 2019, 109, 1-18.	2.3	26
38	Structure of Masaya and Momotombo volcano, Nicaragua, investigated with a temporary seismic network. Journal of Volcanology and Geothermal Research, 2019, 379, 1-11.	2.1	11
39	The frequency-size scaling of non-volcanic tremors beneath the San Andreas Fault at Parkfield: Possible implications for seismic energy release. Earth and Planetary Science Letters, 2019, 516, 77-107.	4.4	7
40	Including seismic risk mitigation measures into the Levelized Cost Of Electricity in enhanced geothermal systems for optimal siting. Applied Energy, 2019, 238, 831-850.	10.1	28
41	Difficulties in explaining complex issues with maps: evaluating seismic hazard communication – the Swiss case. Natural Hazards and Earth System Sciences, 2019, 19, 2677-2700.	3.6	18
42	Real-time discrimination of earthquake foreshocks and aftershocks. Nature, 2019, 574, 193-199.	27.8	184
43	Autonomous Decision-Making Against Induced Seismicity in Deep Fluid Injections. Springer Series in Geomechanics and Geoengineering, 2019, , 369-376.	0.1	3
44	Investigation of the Central Adriatic lithosphere structure with the AlpArray-CASE seismic experiment. Geofizika, 2019, 35, 103-128.	0.4	5
45	The November 2017 <i>M</i> _w 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea. Science, 2018, 360, 1003-1006.	12.6	325
46	Pick- and waveform-based techniques for real-time detection of induced seismicity. Geophysical Journal International, 2018, 213, 868-884.	2.4	40
47	Multicomponent ensemble models to forecast induced seismicity. Geophysical Journal International, 2018, 212, 476-490.	2.4	9
48	Earthquakes in Switzerland and surrounding regions during 2015 and 2016. Swiss Journal of Geosciences, 2018, 111, 221-244.	1.2	22
49	Subaqueous landslide-triggered tsunami hazard for Lake Zurich, Switzerland. Swiss Journal of Geosciences, 2018, 111, 353-371.	1.2	14
50	A subaqueous hazard map for earthquake-triggered landslides in Lake Zurich, Switzerland. Natural Hazards, 2018, 90, 51-78.	3.4	20
51	Communicating Earthquake Preparedness: The Influence of Induced Mood, Perceived Risk, and Gain or Loss Frames on Homeowners' Attitudes Toward General Precautionary Measures for Earthquakes. Risk Analysis, 2018, 38, 710-723.	2.7	21
52	The Collaboratory for the Study of Earthquake Predictability: Achievements and Priorities. Seismological Research Letters, 2018, 89, 1305-1313.	1.9	79
53	Prospective CSEP Evaluation of 1â€Day, 3â€Month, and 5â€Yr Earthquake Forecasts for Italy. Seismological Research Letters, 2018, 89, 1251-1261.	1.9	52
54	The Effect of a Mainshock on the Size Distribution of the Aftershocks. Geophysical Research Letters, 2018, 45, 13,277.	4.0	52

4

#	Article	IF	CITATIONS
55	Subsurface Fluid Pressure and Rock Deformation Monitoring Using Seismic Velocity Observations. Geophysical Research Letters, 2018, 45, 10,389-10,397.	4.0	34
56	The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment. Solid Earth, 2018, 9, 115-137.	2.8	126
57	On the link between stress field and small-scale hydraulic fracture growth in anisotropic rock derived from microseismicity. Solid Earth, 2018, 9, 39-61.	2.8	48
58	A Hybrid Empirical Green's Function Technique for Predicting Ground Motion from Induced Seismicity: Application to the Basel Enhanced Geothermal System. Geosciences (Switzerland), 2018, 8, 180.	2.2	2
59	Bilinearity in the Gutenbergâ€Richter Relation Based on <scp><i>M</i></scp> _L for Magnitudes Above and Below 2, From Systematic Magnitude Assessments in Parkfield (California). Geophysical Research Letters, 2018, 45, 6887-6897.	4.0	20
60	Maximum Magnitude Forecast in Hydraulic Stimulation Based on Clustering and Size Distribution of Early Microseismicity. Geophysical Research Letters, 2018, 45, 6907-6917.	4.0	9
61	ShakeMap-based prediction of earthquake-induced mass movements in Switzerland calibrated on historical observations. Natural Hazards, 2018, 92, 1211-1235.	3.4	9
62	Tailor-made risk governance for induced seismicity of geothermal energy projects: An application to Switzerland. Geothermics, 2017, 65, 295-312.	3.4	35
63	Estimating ETAS: The effects of truncation, missing data, and model assumptions. Journal of Geophysical Research: Solid Earth, 2017, 122, 449-469.	3.4	59
64	On the physicsâ€based processes behind productionâ€induced seismicity in natural gas fields. Journal of Geophysical Research: Solid Earth, 2017, 122, 3792-3812.	3.4	55
65	Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective. Reviews of Geophysics, 2017, 55, 310-340.	23.0	235
66	Hierarchical Bayesian Modeling of Fluidâ€Induced Seismicity. Geophysical Research Letters, 2017, 44, 11,357.	4.0	36
67	Induced seismicity closed-form traffic light system for actuarial decision-making during deep fluid injections. Scientific Reports, 2017, 7, 13607.	3.3	62
68	The induced earthquake sequence related to the St. Gallen deep geothermal project (Switzerland): Fault reactivation and fluid interactions imaged by microseismicity. Journal of Geophysical Research: Solid Earth, 2017, 122, 7272-7290.	3.4	81
69	Objective estimation of spatially variable parameters of epidemic type aftershock sequence model: Application to California. Journal of Geophysical Research: Solid Earth, 2017, 122, 5118-5143.	3.4	44
70	Systematic assessment of the static stress triggering hypothesis using interearthquake time statistics. Journal of Geophysical Research: Solid Earth, 2016, 121, 1890-1909.	3.4	29
71	The importance of earthquake interactions for injectionâ€induced seismicity: Retrospective modeling of the Basel Enhanced Geothermal System. Geophysical Research Letters, 2016, 43, 4992-4999	4.0	51
72	Preface to the special issue "Strategic applications of real-time risk mitigation strategies and tools: case studies and lessons learned in REAKT― Bulletin of Earthquake Engineering, 2016, 14, 2437-2439.	4.1	2

#	Article	IF	CITATIONS
73	Shortâ€term probabilistic earthquake risk assessment considering timeâ€dependent <i>b</i> values. Geophysical Research Letters, 2016, 43, 1100-1108.	4.0	62
74	Spatial distribution and energy release of nonvolcanic tremor at Parkfield, California. Journal of Geophysical Research: Solid Earth, 2016, 121, 8833-8854.	3.4	5
75	Validating induced seismicity forecast models—Induced Seismicity Test Bench. Journal of Geophysical Research: Solid Earth, 2016, 121, 6009-6029.	3.4	21
76	Normalized rupture potential for small and large earthquakes along the Pacific Plate off Japan. Geophysical Research Letters, 2016, 43, 7468-7477.	4.0	4
77	Operational earthquake forecasting in Europe: progress, despite challenges. Bulletin of Earthquake Engineering, 2016, 14, 2459-2469.	4.1	18
78	Earthquake early warning and operational earthquake forecasting as real-time hazard information to mitigate seismic risk at nuclear facilities. Bulletin of Earthquake Engineering, 2016, 14, 2495-2512.	4.1	30
79	Communicating Timeâ€Varying Seismic Risk during an Earthquake Sequence. Seismological Research Letters, 2016, 87, 301-312.	1.9	10
80	Reply to 'Tohoku rupture reloaded?'. Nature Geoscience, 2016, 9, 183-185.	12.9	5
81	Earthquakes in Switzerland and surrounding regions during 2014. Swiss Journal of Geosciences, 2015, 108, 425-443.	1.2	24
82	Potential of ambient seismic noise techniques to monitor the St. Gallen geothermal site (Switzerland). Journal of Geophysical Research: Solid Earth, 2015, 120, 4301-4316.	3.4	77
83	Seismic monitoring and analysis of deep geothermal projects in St Gallen and Basel, Switzerland. Geophysical Journal International, 2015, 201, 1022-1039.	2.4	78
84	Ground Motion to Intensity Conversion Equations (GMICEs): A Global Relationship and Evaluation of Regional Dependency. Bulletin of the Seismological Society of America, 2015, 105, 1476-1490.	2.3	81
85	Randomness of megathrust earthquakes impliedÂby rapid stress recovery after the JapanÂearthquake. Nature Geoscience, 2015, 8, 152-158.	12.9	131
86	Induced seismicity risk analysis of the 2006 Basel, Switzerland, Enhanced Geothermal System project: Influence of uncertainties on risk mitigation. Geothermics, 2015, 53, 133-146.	3.4	87
87	A search for evidence of secondary static stress triggering during the 1992 <i>M</i> _{<i>w</i>} 7.3 Landers, California, earthquake sequence. Journal of Geophysical Research: Solid Earth, 2014, 119, 3354-3370.	3.4	44
88	Earthquakes in Switzerland and surrounding regions during 2013. Swiss Journal of Geosciences, 2014, 107, 359-375.	1.2	27
89	Forecasting Seismic Risk as an Earthquake Sequence Happens. , 2014, , 167-182.		2
90	New predictive equations and site amplification estimates for the next-generation Swiss ShakeMaps. Geophysical Journal International, 2014, 200, 421-438.	2.4	40

#	Article	IF	CITATIONS
91	Balancing reservoir creation and seismic hazard in enhanced geothermal systems. Geophysical Journal International, 2014, 198, 1585-1598.	2.4	20
92	Systematic survey of highâ€resolution <i>b</i> value imaging along Californian faults: Inference on asperities. Journal of Geophysical Research: Solid Earth, 2014, 119, 2029-2054.	3.4	92
93	The quantification of low-probability–high-consequences events: part I. A generic multi-risk approach. Natural Hazards, 2014, 73, 1999-2022.	3.4	66
94	Reply to Comment by Kamer on "Systematic survey of highresolution <i>b</i> value imaging along Californian faults: Inference on asperities― Journal of Geophysical Research: Solid Earth, 2014, 119, 5834-5837.	3.4	4
95	A smoothed stochastic earthquake rate model considering seismicity and fault moment release for Europe. Geophysical Journal International, 2014, 198, 1159-1172.	2.4	33
96	Towards a Real-Time Forecast of Induced Seismicity for Enhanced Geothermal Systems. , 2014, , .		11
97	Geomechanical modeling of induced seismicity source parameters and implications for seismic hazard assessment. Geophysics, 2013, 78, KS25-KS39.	2.6	79
98	Earthquakes in Switzerland and surrounding regions during 2012. Swiss Journal of Geosciences, 2013, 106, 543-558.	1.2	19
99	Building Robust Models to Forecast the Induced Seismicity Related to Geothermal Reservoir Enhancement. Bulletin of the Seismological Society of America, 2013, 103, 383-393.	2.3	61
100	Completeness of the Mainland China Earthquake Catalog and Implications for the Setup of the China Earthquake Forecast Testing Center. Bulletin of the Seismological Society of America, 2013, 103, 845-859.	2.3	56
101	A Stochastic Forecast of California Earthquakes Based on Fault Slip and Smoothed Seismicity. Bulletin of the Seismological Society of America, 2013, 103, 799-810.	2.3	17
102	Generic dependence of the frequencyâ€size distribution of earthquakes on depth and its relation to the strength profile of the crust. Geophysical Research Letters, 2013, 40, 709-714.	4.0	124
103	The role of Coulomb stress changes for injectionâ€induced seismicity: The Basel enhanced geothermal system. Geophysical Research Letters, 2013, 40, 72-77.	4.0	82
104	A stochastic model for induced seismicity based on non-linear pressure diffusion and irreversible permeability enhancement. Geophysical Journal International, 2013, 194, 1229-1249.	2.4	67
105	Combining controlled-source seismology and receiver function information to derive 3-D Moho topography for Italy. Geophysical Journal International, 2013, 194, 1050-1068.	2.4	116
106	Size distribution of Parkfield's microearthquakes reflects changes in surface creep rate. Geophysical Journal International, 2013, 193, 1474-1478.	2.4	31
107	Earthquakes in Switzerland and surrounding regions during 2011. Swiss Journal of Geosciences, 2012, 105, 463-476.	1.2	21
108	Earthquake recurrence models fail when earthquakes fail to reset the stress field. Geophysical Research Letters, 2012, 39, .	4.0	27

#	Article	IF	CITATIONS
109	Probabilistic tsunami hazard in the Mediterranean Sea. Journal of Geophysical Research, 2012, 117, .	3.3	119
110	Influence of poreâ€pressure on the eventâ€size distribution of induced earthquakes. Geophysical Research Letters, 2012, 39, .	4.0	196
111	A prospective earthquake forecast experiment in the western Pacific. Geophysical Journal International, 2012, 190, 1579-1592.	2.4	28
112	The Effect of Uncertainties on Estimates of Background Seismicity Rate. Bulletin of the Seismological Society of America, 2011, 101, 482-494.	2.3	37
113	An evolutionary approach to real-time moment magnitude estimation via inversion of displacement spectra. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	13
114	A retrospective comparative forecast test on the 1992 Landers sequence. Journal of Geophysical Research, 2011, 116, .	3.3	70
115	Stress drop variations of induced earthquakes at the Basel geothermal site. Geophysical Research Letters, 2011, 38, .	4.0	180
116	Quantifying a Potential Bias in Probabilistic Seismic Hazard Assessment: Seismotectonic Zonation with Fractal Properties. Bulletin of the Seismological Society of America, 2011, 101, 2694-2711.	2.3	9
117	Bayesian Estimation of the Spatially Varying Completeness Magnitude of Earthquake Catalogs. Bulletin of the Seismological Society of America, 2011, 101, 1371-1385.	2.3	108
118	Statistical analysis of the induced Basel 2006 earthquake sequence: introducing a probability-based monitoring approach for Enhanced Geothermal Systems. Geophysical Journal International, 2011, 186, 793-807.	2.4	143
119	Earthquakes in Switzerland and surrounding regions during 2010. Swiss Journal of Geosciences, 2011, 104, 537-547.	1.2	11
120	Community Online Resource for Statistical Seismicity Analysis. Seismological Research Letters, 2011, 82, 686-690.	1.9	6
121	Earthquakes in Switzerland and surrounding regions during 2009. Swiss Journal of Geosciences, 2010, 103, 535-549.	1.2	19
122	Earthquake detection capability of the Swiss Seismic Network. Geophysical Journal International, 2010, , no-no.	2.4	21
123	Are shortâ€ŧerm evacuations warranted? Case of the 2009 L'Aquila earthquake. Geophysical Research Letters, 2010, 37, .	4.0	60
124	The influence of tectonic regimes on the earthquake size distribution: A case study for Italy. Geophysical Research Letters, 2010, 37, .	4.0	102
125	Changes of Reporting Rates in the Southern California Earthquake Catalog, Introduced by a New Definition of ML. Bulletin of the Seismological Society of America, 2010, 100, 1733-1742.	2.3	33
126	Reply to "Comment on 'Changes of Reporting Rates in the Southern California Earthquake Catalog, Introduced by a New Definition of ML' by Thessa Tormann, Stefan Wiemer, and Egill Hauksson" by Duncan Carr Agnew. Bulletin of the Seismological Society of America, 2010, 100, 3325-3328.	2.3	1

#	Article	IF	CITATIONS
127	Adaptively smoothed seismicity earthquake forecasts for Italy. Annals of Geophysics, 2010, 53, .	1.0	7
128	Asperity-based earthquake likelihood models for Italy. Annals of Geophysics, 2010, 53, .	1.0	8
129	Retrospective evaluation of the five-year and ten-year CSEP-Italy earthquake forecasts. Annals of Geophysics, 2010, 53, .	1.0	15
130	Real-time Performance of the Virtual Seismologist Earthquake Early Warning Algorithm in Southern California. Seismological Research Letters, 2009, 80, 740-747.	1.9	76
131	Probabilistic seismic hazard assessment of Switzerland: best estimates and uncertainties. Journal of Seismology, 2009, 13, 449-478.	1.3	80
132	Development of a seismic source model for probabilistic seismic hazard assessment of nuclear power plant sites in Switzerland: the view from PEGASOS Expert Group 4 (EG1d). Swiss Journal of Geosciences, 2009, 102, 189-209.	1.2	17
133	Earthquakes in Switzerland and surrounding regions during 2008. Swiss Journal of Geosciences, 2009, 102, .	1.2	10
134	Enhanced Geothermal Systems: Mitigating Risk in Urban Areas. Eos, 2009, 90, 273-274.	0.1	54
135	Magmatic processes in the Alaska subduction zone by combined 3â€Ð <i>b</i> value imaging and targeted seismic tomography. Journal of Geophysical Research, 2009, 114, .	3.3	27
136	Earthquakes in Switzerland and surrounding regions during 2007. Swiss Journal of Geosciences, 2008, 101, 659-667.	1.2	18
137	Networking Research Infrastructures for Earthquake Seismology in Europe. Eos, 2008, 89, 219-219.	0.1	2
138	Time-, Distance-, and Magnitude-Dependent Foreshock Probability Model for New Zealand. Bulletin of the Seismological Society of America, 2008, 98, 2149-2160.	2.3	7
139	Earthquake Likelihood Model Testing. Seismological Research Letters, 2007, 78, 17-29.	1.9	235
140	Short-term Aftershock Probabilities: Case Studies in California. Seismological Research Letters, 2007, 78, 66-77.	1.9	27
141	An experimental study to assess the potential of homogeneous charge compression ignition diesel combustion with various fuels for light-duty engines. International Journal of Engine Research, 2007, 8, 1-13.	2.3	4
142	ALM: An Asperity-based Likelihood Model for California. Seismological Research Letters, 2007, 78, 134-140.	1.9	84
143	Investigations on the Start-Up Process of a DISI Engine. , 2007, , .		4
144	Earthquakes in Switzerland and surrounding regions during 2006. Swiss Journal of Geosciences, 2007, 100, 517-528.	1.2	29

#	Article	IF	CITATIONS
145	Spatial correlation of aftershock locations and on-fault main shock properties. Journal of Geophysical Research, 2006, 111, .	3.3	45
146	Change in seismic activity in the Tokai region related to weakening and strengthening of the interplate coupling. Tectonophysics, 2006, 417, 17-31.	2.2	9
147	Earthquakes in Switzerland and surrounding regions during 2005. Eclogae Geologicae Helveticae, 2006, 99, 443-452.	0.6	30
148	Real-time forecasts of tomorrow's earthquakes in California. Nature, 2005, 435, 328-331.	27.8	278
149	Variations in earthquake-size distribution across different stress regimes. Nature, 2005, 437, 539-542.	27.8	795
150	Microseismicity data forecast rupture area. Nature, 2005, 434, 1086-1086.	27.8	164
151	Earthquakes in Switzerland and surrounding regions during 2004. Eclogae Geologicae Helveticae, 2005, 98, 407-418.	0.6	41
152	Predictive ground motion scaling in Switzerland: Best estimates and uncertainties. Journal of Seismology, 2005, 9, 223-240.	1.3	23
153	Homogeneous Moment-Magnitude Calibration in Switzerland. Bulletin of the Seismological Society of America, 2005, 95, 58-74.	2.3	58
154	Correlating seismicity parameters and subsidence in the Tokai region, central Japan. Journal of Geophysical Research, 2005, 110, .	3.3	12
155	Assessing the Quality of Earthquake Catalogues: Estimating the Magnitude of Completeness and Its Uncertainty. Bulletin of the Seismological Society of America, 2005, 95, 684-698.	2.3	776
156	Fractal Dimension and b-Value on Creeping and Locked Patches of the San Andreas Fault near Parkfield, California. Bulletin of the Seismological Society of America, 2004, 94, 410-421.	2.3	121
157	Earthquakes in Switzerland and surrounding regions during 2003. Eclogae Geologicae Helveticae, 2004, 97, 447-458.	0.6	24
158	The 1997 Kagoshima (Japan) earthquake doublet: A quantitative analysis of aftershock rate changes. Geophysical Research Letters, 2004, 31, .	4.0	31
159	Earthquake statistics at Parkfield: 1. Stationarity ofbvalues. Journal of Geophysical Research, 2004, 109, .	3.3	133
160	Earthquake statistics at Parkfield: 2. Probabilistic forecasting and testing. Journal of Geophysical Research, 2004, 109, .	3.3	22
161	Remotely Triggered Seismicity in the Yellowstone National Park Region by the 2002 Mw 7.9 Denali Fault Earthquake, Alaska. Bulletin of the Seismological Society of America, 2004, 94, S317-S331.	2.3	70
162	Probabilistic earthquake location in complex three-dimensional velocity models: Application to Switzerland. Journal of Geophysical Research, 2003, 108, .	3.3	124

#	Article	IF	CITATIONS
163	Stability and significance tests forb-value anomalies: Example from the Tyrrhenian Sea. Geophysical Research Letters, 2003, 30, .	4.0	74
164	Reply to "Comment on `Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan,' by Stefan Wiemer and Max Wyss," by Paul A. Rydelek and I. S. Sacks. Bulletin of the Seismological Society of America, 2003, 93, 1868-1871.	2.3	17
165	Properties of the Aftershock Sequence of the 1999 Mw 7.1 Hector Mine Earthquake: Implications for Aftershock Hazard. Bulletin of the Seismological Society of America, 2002, 92, 1227-1240.	2.3	88
166	Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Advances in Geophysics, 2002, 45, 259-V.	2.8	297
167	A systematic test of the hypothesis that thebvalue varies with depth in California. Geophysical Research Letters, 2001, 28, 57-60.	4.0	96
168	Anomalously high b-values in the South Flank of Kilauea volcano, Hawaii: evidence for the distribution of magma below Kilauea's East rift zone. Journal of Volcanology and Geothermal Research, 2001, 106, 23-37.	2.1	80
169	A Software Package to Analyze Seismicity: ZMAP. Seismological Research Letters, 2001, 72, 373-382.	1.9	907
170	Change in the Probability for Earthquakes in Southern California Due to the Landers Magnitude 7.3 Earthquake. Science, 2000, 290, 1334-1338.	12.6	123
171	Mapping and Removing Quarry Blast Events from Seismicity Catalogs. Bulletin of the Seismological Society of America, 2000, 90, 525-530.	2.3	85
172	Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America, 2000, 90, 859-869.	2.3	1,231
173	Mapping asperities by minima of local recurrence time: San Jacinto-Elsinore fault zones. Journal of Geophysical Research, 2000, 105, 7829-7844.	3.3	88
174	Introducing probabilistic aftershock hazard mapping. Geophysical Research Letters, 2000, 27, 3405-3408.	4.0	57
175	How Can One Test the Seismic Gap Hypothesis? The Case of Repeated Ruptures in the Aleutians. Pure and Applied Geophysics, 1999, 155, 259-278.	1.9	30
176	Seismicity Patterns: Are they Always Related to Natural Causes?. Pure and Applied Geophysics, 1999, 155, 713-726.	1.9	64
177	Spatial variability of seismicity parameters in aftershock zones. Journal of Geophysical Research, 1999, 104, 13135-13151.	3.3	227
178	Seismicity Patterns: Are they Always Related to Natural Causes?. , 1999, , 713-726.		4
179	Quantitative mapping of precursory seismic quiescence before the 1989, M 7.1off-Sanriku earthquake, Japan. Annals of Geophysics, 1999, 42, .	1.0	26
180	Temporal and three-dimensional spatial analyses of the frequency-magnitude distribution near Long Valley Caldera, California. Geophysical Journal International, 1998, 134, 409-421.	2.4	190

#	Article	IF	CITATIONS
181	Mapping the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times?. Journal of Geophysical Research, 1997, 102, 15115-15128.	3.3	412
182	Mapping active magma chambers bybvalues beneath the off-Ito volcano, Japan. Journal of Geophysical Research, 1997, 102, 20413-20422.	3.3	168
183	Variations in the frequency-magnitude distribution with depth in two volcanic areas: Mount St. Helens, Washington, and Mt. Spurr, Alaska. Geophysical Research Letters, 1997, 24, 189-192.	4.0	173
184	Two current seismic quiescences within 40 km of Tokyo. Geophysical Journal International, 1997, 128, 459-473.	2.4	26
185	Mapping the B-value anomaly at 100 km depth in the Alaska and New Zealand Subduction Zones. Geophysical Research Letters, 1996, 23, 1557-1560.	4.0	163
186	Forecasting the Full Distribution of Earthquake Numbers Is Fair, Robust, and Better. Seismological Research Letters, 0, , .	1.9	9
187	Seismicity Rate Change as a Tool to Investigate Delayed and Remote Triggering of the 2010–2011 Canterbury Earthquake Sequence, New Zealand. Bulletin of the Seismological Society of America, 0, , .	2.3	0
188	Full-Waveform based methods for Microseismic Monitoring Operations: an Application to Natural and Induced Seismicity in the Hengill Geothermal Area, Iceland. Advances in Geosciences, 0, 54, 129-136.	12.0	7
189	Fluid pressure monitoring during hydraulic testing in faulted Opalinus Clay using seismic velocity observations. Geophysics, 0, , 1-41.	2.6	1