List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4750516/publications.pdf Version: 2024-02-01

DHILIDDE CHECAN

#	Article	IF	CITATIONS
1	Tuneable thermal properties of PTHF-based copolymers by incorporation of epoxide units. European Polymer Journal, 2022, 168, 111096.	5.4	3
2	Optical Quantification by Nanopores of Viruses, Extracellular Vesicles, and Nanoparticles. Nano Letters, 2022, 22, 3651-3658.	9.1	4
3	Episulfide Anionic Ring-Opening Polymerization Initiated by Alcohols and Primary Amines in the Presence of Î ³ -Thiolactones. Macromolecules, 2022, 55, 5430-5440.	4.8	6
4	Bio-based poly(ester- <i>alt</i> -thioether)s synthesized by organo-catalyzed ring-opening copolymerizations of eugenol-based epoxides and <i>N</i> -acetyl homocysteine thiolactone. Green Chemistry, 2021, 23, 7743-7750.	9.0	17
5	Alternating copolymerization of bio-based N-acetylhomocysteine thiolactone and epoxides. European Polymer Journal, 2021, 153, 110490.	5.4	9
6	DNA nuclear targeting sequences for enhanced non-viral gene transfer: An inÂvitro and inÂvivo study. Molecular Therapy - Nucleic Acids, 2021, 24, 477-486.	5.1	10
7	Controlled star poly(2-oxazoline)s: Synthesis, characterization. European Polymer Journal, 2020, 122, 109323.	5.4	19
8	Gene transfer to skeletal muscle using hydrodynamic limb vein injection: current applications, hurdles and possible optimizations. Journal of Gene Medicine, 2020, 22, e3150.	2.8	11
9	Conformation-dependent membrane permeabilization by neurotoxic PrP oligomers: The role of the H2H3 oligomerization domain. Archives of Biochemistry and Biophysics, 2020, 692, 108517.	3.0	1
10	Helically shaped cation receptor: design, synthesis, characterisation and first application to ion transport. RSC Advances, 2020, 10, 31670-31679.	3.6	2
11	Synthesis of Linear Polyesters from Monomers Based on 1,18-(<i>Z</i>)-Octadec-9-enedioic Acid and Their Biodegradability. ACS Sustainable Chemistry and Engineering, 2020, 8, 16853-16860.	6.7	15
12	Synthesis of Double Hydrophilic Block Copolymers Poly(2-oxazoline- <i>b</i> -ethylenimine) in a Two-Step Procedure. ACS Applied Polymer Materials, 2020, 2, 2696-2705.	4.4	7
13	Polymerization of epoxide monomers promoted by <i>t</i> BuP ₄ phosphazene base: a comparative study of kinetic behavior. Polymer Chemistry, 2020, 11, 3585-3592.	3.9	13
14	Functional Poly(ester- <i>alt</i> -sulfide)s Synthesized by Organo-Catalyzed Anionic Ring-Opening Alternating Copolymerization of Oxiranes and γ-Thiobutyrolactones. Macromolecules, 2020, 53, 5188-5198.	4.8	22
15	Temperatureâ€5ensitive Amphiphilic Nonâ€ŀonic Triblock Copolymers for Enhanced In Vivo Skeletal Muscle Transfection. Macromolecular Bioscience, 2020, 20, 1900276.	4.1	5
16	Polyglycidol-Stabilized Nanoparticles as a Promising Alternative to Nanoparticle PEGylation: Polymer Synthesis and Protein Fouling Considerations. Langmuir, 2020, 36, 1266-1278.	3.5	12
17	pHâ€Sensitive Poly(ethylene glycol)/Poly(ethoxyethyl glycidyl ether) Block Copolymers: Synthesis, Characterization, Encapsulation, and Delivery of a Hydrophobic Drug. Macromolecular Chemistry and Physics, 2019, 220, 1900210.	2.2	6
18	Synthesis of new biobased linear poly(ester amide)s. European Polymer Journal, 2019, 121, 109314.	5.4	12

#	Article	IF	CITATIONS
19	An alternative approach to create <i>N</i> -substituted cyclic dipeptides. Polymer Chemistry, 2019, 10, 776-785.	3.9	10
20	Modification of prolineâ€based 2,5â€diketopiperazines by anionic ringâ€opening polymerization. Journal of Polymer Science Part A, 2019, 57, 1008-1016.	2.3	8
21	β yclodextrinâ€Based Star Amphiphilic Copolymers: Synthesis, Characterization, and Evaluation as Artificial Channels. Macromolecular Chemistry and Physics, 2019, 220, 1800308.	2.2	4
22	Poly(<i>N</i> â€methylvinylamine)â€Based Copolymers for Improved Gene Transfection. Macromolecular Bioscience, 2018, 18, e1700353.	4.1	7
23	Anionic ringâ€opening polymerization of <i>N</i> â€glycidylphthalimide: Combination of phosphazene base and activated monomer mechanism. Journal of Polymer Science Part A, 2018, 56, 1091-1099.	2.3	11
24	Polynucleotide transport through lipid membrane in the presence of starburst cyclodextrin-based poly(ethylene glycol)s. European Physical Journal E, 2018, 41, 132.	1.6	5
25	Tailor-Made Poly(vinylamine)s via Thermal or Photochemical Organometallic Mediated Radical Polymerization. ACS Symposium Series, 2018, , 349-363.	0.5	4
26	Curcumin/poly(2-methyl-2-oxazoline-b-tetrahydrofuran-b-2-methyl-2-oxazoline) formulation: An improved penetration and biological effect of curcumin in F508del-CFTR cell lines. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 168-181.	4.3	11
27	Use of Primary and Secondary Polyvinylamines for Efficient Gene Transfection. Biomacromolecules, 2017, 18, 440-451.	5.4	22
28	Synthesis of tetraarm star block copolymer based on polytetrahydrofuran and poly(2-methyl-2-oxazoline) for gene delivery applications. European Polymer Journal, 2017, 88, 689-700.	5.4	18
29	Controlled Synthesis of Poly(vinylamine)-Based Copolymers by Organometallic-Mediated Radical Polymerization. Macromolecules, 2016, 49, 4817-4827.	4.8	22
30	Generation of Silicone Polyâ€HIPEs with Controlled Pore Sizes via Reactive Emulsion Stabilization. Macromolecular Rapid Communications, 2016, 37, 1527-1532.	3.9	27
31	Chemical Sensors Based on New Polyamides Biobased on (Z) Octadecâ€9â€Enedioic Acid and β yclodextrin. Macromolecular Chemistry and Physics, 2016, 217, 1620-1628.	2.2	18
32	Evaluation of the Effect of Chemical or Enzymatic Synthesis Methods on Biodegradability of Polyesters. Journal of Polymers and the Environment, 2016, 24, 64-71.	5.0	5
33	Far beyond primary poly(vinylamine)s through free radical copolymerization and amide hydrolysis. Polymer Chemistry, 2016, 7, 69-78.	3.9	19
34	Phosphazene-Promoted Metal-Free Ring-Opening Polymerization of 1,2-Epoxybutane Initiated by Secondary Amides. Macromolecules, 2015, 48, 7755-7764.	4.8	34
35	Poly(2-methyl-2-oxazoline)- <i>b</i> -poly(tetrahydrofuran)- <i>b</i> -poly(2-methyl-2-oxazoline) Amphiphilic Triblock Copolymers: Synthesis, Physicochemical Characterizations, and Hydrosolubilizing Properties. Biomacromolecules, 2015, 16, 748-756.	5.4	20
36	A robust transfection reagent for the transfection of CHO and HEK293 cells and production of recombinant proteins and lentiviral particles – PTG1. Biotechnology Journal, 2014, 9, 1380-1388.	3.5	8

#	Article	IF	CITATIONS
37	Electro-optical properties of aromatic oligoazomethine/permethylated α-cyclodextrin main-chain polyrotaxanes. Chemical Physics Letters, 2014, 599, 104-109.	2.6	11
38	Lipopolyplexes comprising imidazole/imidazolium lipophosphoramidate, histidinylated polyethyleneimine and siRNA as efficient formulation for siRNA transfection. International Journal of Pharmaceutics, 2014, 460, 264-272.	5.2	44
39	Ultrasensitive QRS made by supramolecular assembly of functionalized cyclodextrins and graphene for the detection of lung cancer VOC biomarkers. Journal of Materials Chemistry B, 2014, 2, 6571-6579.	5.8	48
40	Influence of pDNA availability on transfection efficiency of polyplexes in non-proliferative cells. Biomaterials, 2014, 35, 5977-5985.	11.4	25
41	Anionic ring-opening polymerization of ethylene oxide in DMF with cyclodextrin derivatives as new initiators. Carbohydrate Polymers, 2013, 94, 323-331.	10.2	24
42	Biomimetic artificial ion channels based on beta-cyclodextrin. Chemical Communications, 2013, 49, 11647.	4.1	12
43	Novel aliphatic polyesters from an oleic acid based monomer. Synthesis, epoxidation, cross-linking and biodegradation. European Polymer Journal, 2013, 49, 813-822.	5.4	37
44	Synthesis and electroâ€optical properties of polyfluorene modified with randomly distributed electronâ€donor and rotaxane electronâ€acceptor structural units in the main chain. Journal of Polymer Science Part A, 2013, 51, 1672-1683.	2.3	8
45	Synthesis of Poly(2-methyl-2-oxazoline) Star Polymers with a β-Cyclodextrin Core. Australian Journal of Chemistry, 2012, 65, 1145.	0.9	28
46	Gene transfer by chemical vectors, and endocytosis routes of polyplexes, lipoplexes and lipopolyplexes in a myoblast cell line. Biomaterials, 2012, 33, 2980-2990.	11.4	108
47	Supramolecular Assemblies of Histidinylated α-Cyclodextrin in the Presence of DNA Scaffold during CDplexes Formation. Bioconjugate Chemistry, 2011, 22, 2404-2414.	3.6	34
48	Histidinylated linear PEI: a new efficient non-toxic polymer for gene transfer. Chemical Communications, 2011, 47, 12547.	4.1	87
49	Regioselective allylation of cyclomaltoheptaose (β-cyclodextrin) leading to per(2,6-di-O-hydroxypropyl-3-O-methyl)-β-cyclodextrin. Carbohydrate Research, 2011, 346, 2414-2420.	2.3	5
50	Evidence of DNA transfer across a model membrane by a neutral amphiphilic block copolymer. Journal of Gene Medicine, 2011, 13, 538-548.	2.8	12
51	Surface properties of conjugated main-chain polyrotaxanes. Chemical Physics Letters, 2011, 508, 111-116.	2.6	9
52	β-Cyclodextrins modified by alkyl and poly(ethylene oxide) chains: A novel class of mass transfer additives for aqueous organometallic catalysis. Journal of Molecular Catalysis A, 2010, 318, 8-14.	4.8	23
53	Synthesis of Halfâ€Channels by the Anionic Polymerization of Ethylene Oxide Initiated by Modified Cyclodextrin. Advanced Materials, 2009, 21, 4054-4057.	21.0	31
54	Polyrotaxanes of Pyrene–Triazole Conjugated Azomethine and <i>α</i> â€Cyclodextrin with High Fluorescence Properties. Macromolecular Chemistry and Physics, 2009, 210, 1440-1449.	2.2	24

#	Article	IF	CITATIONS
55	Synthesis and bulk organization of polymer nanocomposites based on hemi/ditelechelic poly(propylene oxide) end-functionalized with POSS cages. Polymer, 2009, 50, 3887-3894.	3.8	19
56	Synthesis and characterization of a poly[2,7-(9,9-dioctylfluorene-alt-2,7-fluorene/β-CD)] main chain polyrotaxane. European Polymer Journal, 2009, 45, 795-803.	5.4	28
57	Synthesis and Evaluation of Amphiphilic Poly(tetrahydrofuran-b-ethylene oxide) Copolymers for DNA Delivery into Skeletal Muscle. Pharmaceutical Research, 2008, 25, 2963-2971.	3.5	22
58	Polyfluorene copolymer with a multiply blocked rotaxane architecture in the main chain: Synthesis and characterization. Journal of Applied Polymer Science, 2008, 110, 2384-2392.	2.6	23
59	Morphology and properties of a polyrotaxane based on γ-cyclodextrin and a polyfluorene copolymer. Chemical Physics Letters, 2008, 465, 96-101.	2.6	20
60	Synthesis and characterization of amphiphilic per-(6-thio-2,3-trimethylsilyl)cyclodextrin: Application to Langmuir film formation. Carbohydrate Polymers, 2008, 73, 482-489.	10.2	10
61	Trimethylsilyl permodified cyclodextrins: Hydrolysis at the air–water interface. Thin Solid Films, 2008, 516, 1748-1754.	1.8	1
62	Two Independent Ways of Preparing Hypercharged Hydrolyzable Polyaminorotaxane. Biomacromolecules, 2008, 9, 2007-2013.	5.4	13
63	Per-O-(3-hydroxy)propyl-β-cyclodextrin: a cyclodextrin derivative bearing only primary hydroxyl groups. Carbohydrate Research, 2007, 342, 1989-1991.	2.3	9
64	Effect of mixing protocol on compatibilized polymer blend morphology. Polymer Engineering and Science, 2006, 46, 691-702.	3.1	14
65	Synthesis of per-2,3-di-O-heptyl-β and γ-cyclodextrins: a new kind of amphiphilic molecules bearing hydrophobic parts. Tetrahedron Letters, 2006, 47, 8925-8927.	1.4	21
66	lonic Channel Behavior of Modified Cyclodextrins Inserted in Lipid Membranes. Langmuir, 2005, 21, 5842-5846.	3.5	35
67	A New Versatile Radical Addition onα,ï‰-Dimethacrylate Poly(ethylene oxide). Macromolecular Chemistry and Physics, 2004, 205, 1206-1217.	2.2	9
68	Synthesis and characterization of persilylated cyclodextrins. Carbohydrate Polymers, 2004, 56, 301-311.	10.2	25
69	Poly(ethylene oxide) containing segmented networks as precursors for ion-conducting solid-state materials. Polymer International, 2002, 51, 1231-1237.	3.1	7
70	Ionically conducting networks derived from PEO containing aziridine groups. Polymer International, 1999, 48, 1147-1154.	3.1	5
71	Behaviour of PEO-urethane in solutions of carbonates. Synthesis and electrochemical characterisation of PEO-urethane–coke electrodes. Journal of Materials Chemistry, 1998, 8, 1533-1539.	6.7	2
72	Compatibilizers for Melt Blending: Premade Block Copolymersâ€. Macromolecules, 1996, 29, 5590-5598.	4.8	392