
## Markus Clark Scharber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4750222/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Wide-bandgap organic solar cells with a novel perylene-based non-fullerene acceptor enabling open-circuit voltages beyond 1.4 V. Journal of Materials Chemistry A, 2022, 10, 2888-2906.                                   | 5.2 | 21        |
| 2  | lon-driven nanograin formation in early-stage degradation of tri-cation perovskite films. Nanoscale, 2022, 14, 2605-2616.                                                                                                 | 2.8 | 6         |
| 3  | Phenyleneâ€Bridged Perylene Monoimides as Acceptors for Organic Solar Cells: A Study on the<br>Structure–Property Relationship. Chemistry - A European Journal, 2022, 28, .                                               | 1.7 | 5         |
| 4  | Understanding the low voltage losses in high-performance non-fullerene acceptor-based organic solar cells. Materials Advances, 2021, 2, 4291-4302.                                                                        | 2.6 | 24        |
| 5  | Low Band Gap Conjugated Semiconducting Polymers. Advanced Materials Technologies, 2021, 6, 2000857.                                                                                                                       | 3.0 | 112       |
| 6  | Overcoming intra-molecular repulsions in PEDTT by sulphate counter-ion. Science and Technology of<br>Advanced Materials, 2021, 22, 985-997.                                                                               | 2.8 | 5         |
| 7  | Tunable Properties of Nature-Inspired N,N′-Alkylated Riboflavin Semiconductors. Molecules, 2021, 26, 27.                                                                                                                  | 1.7 | 10        |
| 8  | Highly fluorescent thin films formation by water-enhanced colloidal perovskite nanoparticles. , 2021, , .                                                                                                                 |     | 0         |
| 9  | Controlling Quantum Confinement in Luminescent Perovskite Nanoparticles for Optoelectronic<br>Devices by the Addition of Water. ACS Applied Nano Materials, 2020, 3, 1242-1249.                                           | 2.4 | 21        |
| 10 | Conducting Polymerâ€Based Biocomposites Using Deoxyribonucleic Acid (DNA) as Counterion. Advanced<br>Materials Technologies, 2020, 5, 1900699.                                                                            | 3.0 | 13        |
| 11 | Impedance Spectroscopy of Perovskite Solar Cells: Studying the Dynamics of Charge Carriers Before<br>and After Continuous Operation. Physica Status Solidi (A) Applications and Materials Science, 2020,<br>217, 2000291. | 0.8 | 54        |
| 12 | Are Polyaniline and Polypyrrole Electrocatalysts for Oxygen (O <sub>2</sub> ) Reduction to Hydrogen<br>Peroxide (H <sub>2</sub> O <sub>2</sub> )?. ACS Applied Energy Materials, 2020, 3, 10611-10618.                    | 2.5 | 30        |
| 13 | Synthesis conditions influencing formation of MAPbBr3 perovskite nanoparticles prepared by the ligand-assisted precipitation method. Scientific Reports, 2020, 10, 15720.                                                 | 1.6 | 26        |
| 14 | Designing Ultraflexible Perovskite Xâ€Ray Detectors through Interface Engineering. Advanced Science,<br>2020, 7, 2002586.                                                                                                 | 5.6 | 44        |
| 15 | Anti-Stokes photoluminescence study on a methylammonium lead bromide nanoparticle film.<br>Nanoscale, 2020, 12, 16556-16561.                                                                                              | 2.8 | 8         |
| 16 | Universal Transfer Printing of Micelle-Templated Nanoparticles Using Plasma-Functionalized<br>Graphene. ACS Applied Materials & Interfaces, 2020, 12, 46530-46538.                                                        | 4.0 | 4         |
| 17 | Nanoscale Charge Accumulation and Its Effect on Carrier Dynamics in Tri-cation Perovskite<br>Structures. ACS Applied Materials & Interfaces, 2020, 12, 48057-48066.                                                       | 4.0 | 21        |
| 18 | Substrate-assisted Transfer of Nanoparticles by Graphene on Metal-Organic Interfaces. , 2020, , .                                                                                                                         |     | 0         |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Comparison of fluorene, silafluorene and carbazole as linkers in perylene monoimide based non-fullerene acceptors. Materials Advances, 2020, 1, 2095-2106.                                                           | 2.6 | 7         |
| 20 | Plasmon-Assisted Direction- and Polarization-Sensitive Organic Thin-Film Detector. Nanomaterials, 2020, 10, 1866.                                                                                                    | 1.9 | 10        |
| 21 | Microwave-Assisted Preparation of Organo-Lead Halide Perovskite Single Crystals. Crystal Growth and Design, 2020, 20, 1388-1393.                                                                                     | 1.4 | 20        |
| 22 | Improving the Performance of Perovskite Solar Cells using a Polyphosphazene Interfacing Layer.<br>Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900436.                                  | 0.8 | 9         |
| 23 | Acetylacetone Improves the Performance of Mixed Halide Perovskite Solar Cells. Journal of Physical<br>Chemistry C, 2019, 123, 23807-23816.                                                                           | 1.5 | 12        |
| 24 | Reverse Micelle Templating Route to Ordered Monodispersed Spherical Organo-Lead Halide Perovskite<br>Nanoparticles for Light Emission. ACS Applied Nano Materials, 2019, 2, 4121-4132.                               | 2.4 | 32        |
| 25 | Optoelectronic Properties of Layered Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900126.                                                                                                                            | 3.1 | 13        |
| 26 | Photoconductive Properties of Dibenzotetrathiafulvalene-Tetracyanoquinodimethane (DBTTF-TCNQ)<br>Nanorods Prepared by the Reprecipitation Method. Journal of Nanoscience and Nanotechnology, 2019,<br>19, 4599-4602. | 0.9 | 2         |
| 27 | Stable Hall voltages in presence of dynamic quasi-continuum bands in poly(3,4-ethylene-dioxythiophene). Organic Electronics, 2019, 65, 412-418.                                                                      | 1.4 | 3         |
| 28 | The influence of perovskite precursor composition on the morphology and photovoltaic performance of mixed halide MAPbI3-xClx solar cells. Solar Energy, 2018, 163, 215-223.                                          | 2.9 | 36        |
| 29 | Size control of CH3NH3PbBr3 perovskite cuboid fine crystals synthesized by ligand-free reprecipitation method. Microsystem Technologies, 2018, 24, 619-623.                                                          | 1.2 | 2         |
| 30 | Degradation kinetics in different polymer–fullerene blends investigated by electron spin resonance.<br>Journal of Materials Research, 2018, 33, 1853-1859.                                                           | 1.2 | 9         |
| 31 | Inverted (p–i–n) perovskite solar cells using a low temperature processed TiO <sub>x</sub> interlayer.<br>RSC Advances, 2018, 8, 24836-24846.                                                                        | 1.7 | 17        |
| 32 | Optical and electronic properties of mixed halide (X = I, Cl, Br) methylammonium lead perovskite solar<br>cells. Journal of Materials Chemistry C, 2017, 5, 1714-1723.                                               | 2.7 | 120       |
| 33 | Magnetic Field Effects on the Current of PCPDTBT-based Diode. Journal of Physical Chemistry C, 2017, 121, 11727-11732.                                                                                               | 1.5 | 6         |
| 34 | Anderson‣ocalization and the Mott–loffe–Regel Limit in Glassyâ€Metallic PEDOT. Advanced Electronic<br>Materials, 2017, 3, 1700050.                                                                                   | 2.6 | 34        |
| 35 | Enhancing the c-TiO2 based perovskite solar cell performance via modification by a serial of boronic acid derivative self-assembled monolayers. Applied Surface Science, 2017, 423, 521-527.                         | 3.1 | 22        |
| 36 | Confining metal-halide perovskites in nanoporous thin films. Science Advances, 2017, 3, e1700738.                                                                                                                    | 4.7 | 103       |

MARKUS CLARK SCHARBER

| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Photon management in organic light-emitting diodes with multilayered plasmonic nanostars. , 2017, , .                                                                              |      | 0         |
| 38 | Different Device Architectures for Bulk-Heterojunction Solar Cells. Frontiers in Materials, 2016, 3, .                                                                             | 1.2  | 10        |
| 39 | Hybrid Multilayered Plasmonic Nanostars for Coherent Random Lasing. Journal of Physical Chemistry<br>C, 2016, 120, 23707-23715.                                                    | 1.5  | 15        |
| 40 | Performance Boost of Organic Lightâ€Emitting Diodes with Plasmonic Nanostars. Advanced Optical<br>Materials, 2016, 4, 772-781.                                                     | 3.6  | 45        |
| 41 | Systematic Investigation of Porphyrinâ€Thiophene Conjugates for Ternary Bulk Heterojunction Solar<br>Cells. Advanced Energy Materials, 2016, 6, 1600957.                           | 10.2 | 25        |
| 42 | Local order drives the metallic state in PEDOT:PSS. Journal of Materials Chemistry C, 2016, 4, 6982-6987.                                                                          | 2.7  | 19        |
| 43 | Solution processed perovskite solar cells using highly conductive PEDOT:PSS interfacial layer. Solar Energy Materials and Solar Cells, 2016, 157, 318-325.                         | 3.0  | 69        |
| 44 | On the Efficiency Limit of Conjugated Polymer:Fullereneâ€Based Bulk Heterojunction Solar Cells.<br>Advanced Materials, 2016, 28, 1994-2001.                                        | 11.1 | 176       |
| 45 | Factors determining large observed increases in power conversion efficiency of P3HT:PCBM solar cells embedded with Mo6S9â°'xlx nanowires. Synthetic Metals, 2016, 212, 105-112.    | 2.1  | 16        |
| 46 | The Role of Heteroatoms Leading to Hydrogen Bonds in View of Extended Chemical Stability of<br>Organic Semiconductors. Advanced Functional Materials, 2015, 25, 6679-6688.         | 7.8  | 24        |
| 47 | Electrocatalytic Reduction of Carbon Dioxide using Sol-gel Processed Copper Indium Sulfide (CIS)<br>Immobilized on ITO-Coated Glass Electrode. Electrocatalysis, 2015, 6, 405-413. | 1.5  | 14        |
| 48 | Iodideâ€Capped PbS Quantum Dots: Full Optical Characterization of a Versatile Absorber. Advanced<br>Materials, 2015, 27, 1533-1539.                                                | 11.1 | 14        |
| 49 | Reversible Photochemical Isomerization of <i>N</i> , <i>N</i> ′-Di( <i>t</i> -butoxycarbonyl)indigos.<br>Journal of Physical Chemistry A, 2015, 119, 3563-3568.                    | 1.1  | 29        |
| 50 | Cul as versatile hole-selective contact for organic solar cell based on anthracene-containing<br>PPE–PPV. Solar Energy Materials and Solar Cells, 2015, 143, 369-374.              | 3.0  | 35        |
| 51 | Transparent conductive ZnO layers on polymer substrates: Thin film deposition and application in organic solar cells. Thin Solid Films, 2015, 591, 97-104.                         | 0.8  | 38        |
| 52 | Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for<br>improved stability in air. Nature Materials, 2015, 14, 1032-1039.                  | 13.3 | 807       |
| 53 | Substrateâ€Oriented Nanorod Scaffolds in Polymer–Fullerene Bulk Heterojunction Solar Cells.<br>ChemPhysChem, 2014, 15, 1070-1075.                                                  | 1.0  | 12        |
| 54 | Charge Separation in PCPDTBT:PCBM Blends from an EPR Perspective. Journal of Physical Chemistry C, 2014, 118, 28482-28493.                                                         | 1.5  | 61        |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Photoinduced Energy Transfer from Poly( <i>N</i> â€vinylcarbazole) to<br>Tricarbonylchloroâ€(2,2′â€bipyridyl)rhenium(l). ChemPhysChem, 2014, 15, 3634-3638.                                                         | 1.0  | 8         |
| 56 | 4% Efficient Polymer Solar Cells on Paper Substrates. Journal of Physical Chemistry C, 2014, 118, 16813-16817.                                                                                                      | 1.5  | 85        |
| 57 | Electrochemical Self-Assembly of Nanostructured CuSCN/Rhodamine B Hybrid Thin Film and Its<br>Dye-Sensitized Photocathodic Properties. Journal of Physical Chemistry C, 2014, 118, 16581-16590.                     | 1.5  | 28        |
| 58 | Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer. Organic Electronics, 2014, 15, 997-1001.                                                                                             | 1.4  | 41        |
| 59 | Ultrathin, highly flexible and stretchable PLEDs. Nature Photonics, 2013, 7, 811-816.                                                                                                                               | 15.6 | 832       |
| 60 | Efficiency of bulk-heterojunction organic solar cells. Progress in Polymer Science, 2013, 38, 1929-1940.                                                                                                            | 11.8 | 881       |
| 61 | Silicon/organic hybrid heterojunction infrared photodetector operating in the telecom regime.<br>Organic Electronics, 2013, 14, 1344-1350.                                                                          | 1.4  | 41        |
| 62 | Electrical properties of pSi/[6,6] phenyl-C61 butyric acid methyl ester/Al hybrid heterojunctions:<br>Experimental and theoretical evaluation of diode operation. Journal of Applied Physics, 2012, 112,<br>114508. | 1.1  | 6         |
| 63 | Exciton diffusion length in narrow bandgap polymers. Energy and Environmental Science, 2012, 5,<br>6960.                                                                                                            | 15.6 | 207       |
| 64 | Nano-morphology characterization of organic bulk heterojunctions based on mono and bis-adduct fullerenes. Organic Electronics, 2012, 13, 1315-1321.                                                                 | 1.4  | 16        |
| 65 | Charge transfer excitons in low band gap polymer based solar cells and the role of processing additives. Energy and Environmental Science, 2011, 4, 5077.                                                           | 15.6 | 66        |
| 66 | Lowâ€Temperature Behaviour of Charge Transfer Excitons in Narrowâ€Bandgap Polymerâ€Based Bulk<br>Heterojunctions. Advanced Energy Materials, 2011, 1, 604-609.                                                      | 10.2 | 83        |
| 67 | Charge Transport and Recombination in Lowâ€Bandgap Bulk Heterojunction Solar Cell using Bisâ€adduct<br>Fullerene. Advanced Energy Materials, 2011, 1, 1162-1168.                                                    | 10.2 | 108       |
| 68 | Nanomorphology and Charge Generation in Bulk Heterojunctions Based on Lowâ€Bandgap Dithiophene<br>Polymers with Different Bridging Atoms. Advanced Functional Materials, 2010, 20, 1180-1188.                       | 7.8  | 173       |
| 69 | Near IR Sensitization of Organic Bulk Heterojunction Solar Cells: Towards Optimization of the Spectral Response of Organic Solar Cells. Advanced Functional Materials, 2010, 20, 338-346.                           | 7.8  | 276       |
| 70 | Fabrication, Optical Modeling, and Color Characterization of Semitransparent Bulkâ€Heterojunction<br>Organic Solar Cells in an Inverted Structure. Advanced Functional Materials, 2010, 20, 1592-1598.              | 7.8  | 182       |
| 71 | Influence of the Bridging Atom on the Performance of a Lowâ€Bandgap Bulk Heterojunction Solar Cell.<br>Advanced Materials, 2010, 22, 367-370.                                                                       | 11.1 | 323       |
| 72 | Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells. Advanced Functional Materials, 2009, 19, 1173-1179.                                             | 7.8  | 392       |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Polymerâ€Fullerene Bulkâ€Heterojunction Solar Cells. Advanced Materials, 2009, 21, 1323-1338.                                                                                                          | 11.1 | 3,060     |
| 74 | Determination of vertical phase separation in a polyfluorene copolymer: fullerene derivative solar cell blend by X-ray photoelectron spectroscopy. Journal of Materials Chemistry, 2009, 19, 4899.     | 6.7  | 43        |
| 75 | Bipolar Charge Transport in PCPDTBTâ€PCBM Bulkâ€Heterojunctions for Photovoltaic Applications.<br>Advanced Functional Materials, 2008, 18, 1757-1766.                                                  | 7.8  | 156       |
| 76 | Design Rules for Donors in Bulkâ€Heterojunction Tandem Solar Cells�Towards 15 % Energy onversion<br>Efficiency. Advanced Materials, 2008, 20, 579-583.                                                 | 11.1 | 502       |
| 77 | Performance improvement of organic solar cells with moth eye anti-reflection coating. Thin Solid<br>Films, 2008, 516, 7167-7170.                                                                       | 0.8  | 141       |
| 78 | Two Novel Cyclopentadithiophene-Based Alternating Copolymers as Potential Donor Components for<br>High-Efficiency Bulk-Heterojunction-Type Solar Cells. Chemistry of Materials, 2008, 20, 4045-4050.   | 3.2  | 179       |
| 79 | Realization, characterization, and optical modeling of inverted bulk-heterojunction organic solar cells. Journal of Applied Physics, 2008, 103, .                                                      | 1.1  | 90        |
| 80 | Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells. Journal of Applied Physics, 2007, 102, .                                                    | 1.1  | 152       |
| 81 | Double-injection current transients as a way of measuring transport in insulating organic films.<br>Journal of Applied Physics, 2007, 101, 114505.                                                     | 1.1  | 26        |
| 82 | Alternating quinoxaline/oligothiophene copolymers—synthesis and unexpected absorption properties.<br>Journal of Materials Chemistry, 2007, 17, 1353-1355.                                              | 6.7  | 54        |
| 83 | Panchromatic Conjugated Polymers Containing Alternating Donor/Acceptor Units for Photovoltaic Applications. Macromolecules, 2007, 40, 1981-1986.                                                       | 2.2  | 428       |
| 84 | Polyterthiophenes as Donors for Polymer Solar Cells. Advanced Functional Materials, 2007, 17, 1371-1376.                                                                                               | 7.8  | 89        |
| 85 | Charge Transfer Excitons in Bulk Heterojunctions of a Polyfluorene Copolymer and a Fullerene<br>Derivative. Advanced Functional Materials, 2007, 17, 2111-2116.                                        | 7.8  | 197       |
| 86 | Organic Fieldâ€Effect Devices as Tool to Characterize the Bipolar Transport in Polymerâ€Fullerene<br>Blends: The Case of P3HTâ€PCBM. Advanced Functional Materials, 2007, 17, 3274-3283.               | 7.8  | 98        |
| 87 | The Influence of Interchain Branches on Solid State Packing, Hole Mobility and Photovoltaic<br>Properties of Poly(3â€hexylthiophene) (P3HT). Macromolecular Rapid Communications, 2007, 28, 1781-1785. | 2.0  | 58        |
| 88 | Physics of organic bulk heterojunction devices for photovoltaic applications. Journal of Applied Physics, 2006, 99, 104503.                                                                            | 1.1  | 227       |
| 89 | Long-Lived Photoinduced Charges in Donorâ^'Acceptor Anthraquinone-Substituted Thiophene<br>Copolymers. Journal of Physical Chemistry B, 2006, 110, 5351-5358.                                          | 1.2  | 27        |
| 90 | Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion<br>Efficiency. Advanced Materials, 2006, 18, 789-794.                                                        | 11.1 | 4,534     |

| #   | Article                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Photoinduced Electron Transfer in Solid C60Donor/Acceptor Complexes Studied by Light-Induced Electron-Spin Resonance. Molecular Crystals and Liquid Crystals, 2005, 427, 3/[315]-21/[333]. | 0.4 | 11        |
| 92  | Double injection as a technique to study charge carrier transport and recombination in bulk-heterojunction solar cells. Applied Physics Letters, 2005, 87, 222110.                         | 1.5 | 45        |
| 93  | Bimolecular Recombination Coefficient as a Sensitive Testing Parameter for Low-Mobility Solar-Cell<br>Materials. Physical Review Letters, 2005, 94, 176806.                                | 2.9 | 297       |
| 94  | Stabilization of the nanomorphology of polymer–fullerene "bulk heterojunction―blends using a<br>novel polymerizable fullerene derivative. Journal of Materials Chemistry, 2005, 15, 5158.  | 6.7 | 221       |
| 95  | Novel Regiospecific MDMO-PPV Polymers with Improved Charge Transport Properties for Bulk<br>Heterojunction Solar Cells. Synthetic Metals, 2005, 153, 81-84.                                | 2.1 | 16        |
| 96  | Novel Regiospecific MDMOâ^'PPV Copolymer with Improved Charge Transport for Bulk Heterojunction Solar Cells. Journal of Physical Chemistry B, 2004, 108, 5235-5242.                        | 1.2 | 86        |
| 97  | Anomalous photoinduced absorption of conjugated polymer/fullerene mixtures at low temperatures and high frequencies. Synthetic Metals, 2004, 141, 109-112.                                 | 2.1 | 6         |
| 98  | Tuning of the photoinduced charge transfer process in donor-acceptor double-cable copolymers. , 2004, 5215, 41.                                                                            |     | 0         |
| 99  | Spectroscopic properties of PEDOTEHIITN. Synthetic Metals, 2003, 137, 1435-1436.                                                                                                           | 2.1 | 24        |
| 100 | Ultrafast spectroscopy of polaron pairs in polymer solar cells. Synthetic Metals, 2003, 137, 1475-1476.                                                                                    | 2.1 | 4         |
| 101 | Tuning of the photoinduced charge transfer process in donor–acceptor double-cable copolymers.<br>Synthetic Metals, 2003, 139, 731-733.                                                     | 2.1 | 12        |
| 102 | Photoinduced electron transfer in solid C60 donor/acceptor complexes. Synthetic Metals, 2001, 121, 1127-1128.                                                                              | 2.1 | 17        |
| 103 | Magnetic resonance studies on conjugated polymer fullerene mixtures. Synthetic Metals, 2001, 121, 1567-1568.                                                                               | 2.1 | 1         |
| 104 | Influence of disorder on the photoinduced excitations in phenyl substituted polythiophenes. Journal of Chemical Physics, 2001, 115, 7235-7244.                                             | 1.2 | 34        |
| 105 | Photoinduced Charge Transfer between Tetracyano-Anthraquino-Dimethane Derivatives and<br>Conjugated Polymers for Photovoltaics. Journal of Physical Chemistry A, 2000, 104, 8315-8322.     | 1.1 | 35        |
| 106 | Photoinduced charge carriers in conjugated polymer–fullerene composites studied with<br>light-induced electron-spin resonance. Physical Review B, 1999, 59, 8019-8025.                     | 1.1 | 150       |
| 107 | Photoexcitations in carbazolyl substituted polydiacetylene (PDA) fullerene composites. Synthetic<br>Metals, 1999, 101, 298-299.                                                            | 2.1 | 3         |
| 108 | Time resolved photoinduced electron spin resonance studies on conjugated polymer fullerene mixtures in solution. Synthetic Metals, 1999, 101, 356-357.                                     | 2.1 | 4         |

| #   | Article                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Light-induced ESR studies in conjugated polymer-fullerene composites. Synthetic Metals, 1999, 102, 1241-1242. | 2.1 | 12        |
| 110 | Dielectric and electro-optic studies of a novel ferroelectric liquid crystal mixture. , 1998, , .             |     | 0         |
| 111 | Radiative Recombination in Bulkâ€Heterojunction Solar Cells. Israel Journal of Chemistry, 0, , .              | 1.0 | 1         |