List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/474996/publications.pdf Version: 2024-02-01

297 papers	36,201 citations	²⁵⁴³ 96 h-index	4338 173 g-index
334	334	334	33563
all docs	docs citations	times ranked	citing authors

HUCO I RELLEN

#	Article	IF	CITATIONS
1	Recent insights into the role of glia and oxidative stress in Alzheimer's disease gained from Drosophila. Current Opinion in Neurobiology, 2022, 72, 32-38.	2.0	13
2	<i>De novo FZR1</i> loss-of-function variants cause developmental and epileptic encephalopathies. Brain, 2022, 145, 1684-1697.	3.7	5
3	Daam2 Regulates Myelin Structure and the Oligodendrocyte Actin Cytoskeleton through Rac1 and Gelsolin. Journal of Neuroscience, 2022, 42, 1679-1691.	1.7	7
4	Loss of IRF2BPL impairs neuronal maintenance through excess Wnt signaling. Science Advances, 2022, 8, eabl5613.	4.7	12
5	Low doses of the organic insecticide spinosad trigger lysosomal defects, elevated ROS, lipid dysregulation, and neurodegeneration in flies. ELife, 2022, 11, .	2.8	16
6	Loss of Neuron Navigator 2 Impairs Brain and Cerebellar Development. Cerebellum, 2022, , 1.	1.4	5
7	Lord of the fruit flies: an interview with Hugo Bellen. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	2
8	ModelMatcher: A scientistâ€centric online platform to facilitate collaborations between stakeholders of rare and undiagnosed disease research. Human Mutation, 2022, , .	1.1	5
9	Novel dominant and recessive variants in human <i>ROBO1</i> cause distinct neurodevelopmental defects through different mechanisms. Human Molecular Genetics, 2022, 31, 2751-2765.	1.4	3
10	Loss-of-function variants in TIAM1 are associated with developmental delay, intellectual disability, and seizures. American Journal of Human Genetics, 2022, 109, 571-586.	2.6	19
11	The microRNA processor <i>DROSHA</i> is a candidate gene for a severe progressive neurological disorder. Human Molecular Genetics, 2022, 31, 2934-2950.	1.4	6
12	'Fly-ing' from rare to common neurodegenerative disease mechanisms. Trends in Genetics, 2022, 38, 972-984.	2.9	16
13	Systematic expression profiling of Dpr and DIP genes reveals cell surface codes in <i>Drosophila</i> larval motor and sensory neurons. Development (Cambridge), 2022, 149, .	1.2	10
14	Neuronal activity induces glucosylceramide that is secreted via exosomes for lysosomal degradation in glia. Science Advances, 2022, 8, .	4.7	21
15	Regulation of Drosophila oviduct muscle contractility by octopamine. IScience, 2022, 25, 104697.	1.9	9
16	Rare deleterious <i>de novo</i> missense variants in <i>Rnf2/Ring2</i> are associated with a neurodevelopmental disorder with unique clinical features. Human Molecular Genetics, 2021, 30, 1283-1292.	1.4	17
17	Model organisms contribute to diagnosis and discovery in the undiagnosed diseases network: current state and a future vision. Orphanet Journal of Rare Diseases, 2021, 16, 206.	1.2	53
18	Heterozygous loss-of-function variants significantly expand the phenotypes associated with loss of GDF11. Genetics in Medicine, 2021, 23, 1889-1900.	1.1	13

#	Article	IF	CITATIONS
19	Phosphatidylserine synthase plays an essential role in glia and affects development, as well as the maintenance of neuronal function. IScience, 2021, 24, 102899.	1.9	11
20	TNPO2 variants associate with human developmental delays, neurologic deficits, and dysmorphic features and alter TNPO2 activity in Drosophila. American Journal of Human Genetics, 2021, 108, 1669-1691.	2.6	23
21	Model organism databases are in jeopardy. Development (Cambridge), 2021, 148, .	1.2	9
22	Neuronal ROS-induced glial lipid droplet formation is altered by loss of Alzheimer's disease–associated genes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	59
23	Use of the CRISPR as9 System in Drosophila Cultured Cells to Introduce Fluorescent Tags into Endogenous Genes. Current Protocols in Molecular Biology, 2020, 130, e112.	2.9	6
24	Low doses of the neonicotinoid insecticide imidacloprid induce ROS triggering neurological and metabolic impairments in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25840-25850.	3.3	85
25	Using <i>Drosophila</i> to drive the diagnosis and understand the mechanisms of rare human diseases. Development (Cambridge), 2020, 147, .	1.2	37
26	BICRA, a SWI/SNF Complex Member, Is Associated with BAF-Disorder Related Phenotypes in Humans and Model Organisms. American Journal of Human Genetics, 2020, 107, 1096-1112.	2.6	32
27	The Daam2–VHL–Nedd4 axis governs developmental and regenerative oligodendrocyte differentiation. Genes and Development, 2020, 34, 1177-1189.	2.7	22
28	<i>Drosophila</i> Voltage-Gated Sodium Channels Are Only Expressed in Active Neurons and Are Localized to Distal Axonal Initial Segment-like Domains. Journal of Neuroscience, 2020, 40, 7999-8024.	1.7	50
29	De novo mutations in TOMM70, a receptor of the mitochondrial import translocase, cause neurological impairment. Human Molecular Genetics, 2020, 29, 1568-1579.	1.4	29
30	De Novo Variants in CDK19 Are Associated with a Syndrome Involving Intellectual Disability and Epileptic Encephalopathy. American Journal of Human Genetics, 2020, 106, 717-725.	2.6	23
31	De novo EIF2AK1 and EIF2AK2 Variants Are Associated with Developmental Delay, Leukoencephalopathy, and Neurologic Decompensation. American Journal of Human Genetics, 2020, 106, 570-583.	2.6	37
32	Loss- or Gain-of-Function Mutations in ACOX1 Cause Axonal Loss via Different Mechanisms. Neuron, 2020, 106, 589-606.e6.	3.8	71
33	Elevated COUP-TFII expression in dopaminergic neurons accelerates the progression of Parkinson's disease through mitochondrial dysfunction. PLoS Genetics, 2020, 16, e1008868.	1.5	12
34	Variants in CAPZA2, a member of an F-actin capping complex, cause intellectual disability and developmental delay. Human Molecular Genetics, 2020, 29, 1537-1546.	1.4	15
35	Novel role of dynaminâ€relatedâ€protein 1 in dynamics of ERâ€lipid droplets in adipose tissue. FASEB Journal, 2020, 34, 8265-8282.	0.2	20
36	Retromer subunit, VPS29, regulates synaptic transmission and is required for endolysosomal function in the aging brain. ELife, 2020, 9, .	2.8	37

#	Article	IF	CITATIONS
37	TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS. ELife, 2020, 9, .	2.8	48
38	A comprehensive iterative approach is highly effective in diagnosing individuals who are exome negative. Genetics in Medicine, 2019, 21, 161-172.	1.1	60
39	cindr, the Drosophila Homolog of the CD2AP Alzheimer's Disease Risk Gene, Is Required for Synaptic Transmission and Proteostasis. Cell Reports, 2019, 28, 1799-1813.e5.	2.9	27
40	De Novo Variants in WDR37 Are Associated with Epilepsy, Colobomas, Dysmorphism, Developmental Delay, Intellectual Disability, and Cerebellar Hypoplasia. American Journal of Human Genetics, 2019, 105, 413-424.	2.6	43
41	Disruptive mutations in TANC2 define a neurodevelopmental syndrome associated with psychiatric disorders. Nature Communications, 2019, 10, 4679.	5.8	43
42	Bi-allelic Variants in IQSEC1 Cause Intellectual Disability, Developmental Delay, and Short Stature. American Journal of Human Genetics, 2019, 105, 907-920.	2.6	22
43	La CaSSA da Drosophila: A Versatile Expansion of the Tool Box. Neuron, 2019, 104, 177-179.	3.8	0
44	Navigating MARRVEL, a Web-Based Tool that Integrates Human Genomics and Model Organism Genetics Information. Journal of Visualized Experiments, 2019, , .	0.2	20
45	The fruit fly at the interface of diagnosis and pathogenic mechanisms of rare and common human diseases. Human Molecular Genetics, 2019, 28, R207-R214.	1.4	72
46	Heterozygous variants in <i>MYBPC1</i> are associated with an expanded neuromuscular phenotype beyond arthrogryposis. Human Mutation, 2019, 40, 1115-1126.	1.1	19
47	Loss of proteins associated with amyotrophic lateral sclerosis affects lysosomal acidification via different routes. Autophagy, 2019, 15, 1467-1469.	4.3	10
48	VAMP associated proteins are required for autophagic and lysosomal degradation by promoting a PtdIns4P-mediated endosomal pathway. Autophagy, 2019, 15, 1214-1233.	4.3	45
49	Ubiquilins regulate autophagic flux through mTOR signalling and lysosomal acidification. Nature Cell Biology, 2019, 21, 384-396.	4.6	102
50	Mutations in ANKLE2, a ZIKA Virus Target, Disrupt an Asymmetric Cell Division Pathway in Drosophila Neuroblasts to Cause Microcephaly. Developmental Cell, 2019, 51, 713-729.e6.	3.1	71
51	Loss of Oxidation Resistance 1, OXR1, Is Associated with an Autosomal-Recessive Neurological Disease with Cerebellar Atrophy and Lysosomal Dysfunction. American Journal of Human Genetics, 2019, 105, 1237-1253.	2.6	34
52	Sphingolipids in the Pathogenesis of Parkinson's Disease and Parkinsonism. Trends in Endocrinology and Metabolism, 2019, 30, 106-117.	3.1	82
53	An efficient CRISPR-based strategy to insert small and large fragments of DNA using short homology arms. ELife, 2019, 8, .	2.8	105
54	Biallelic Mutations in ATP5F1D, which Encodes a Subunit of ATP Synthase, Cause a Metabolic Disorder. American Journal of Human Genetics, 2018, 102, 494-504.	2.6	59

#	Article	IF	CITATIONS
55	Ari-1 Regulates Myonuclear Organization Together with Parkin and Is Associated with Aortic Aneurysms. Developmental Cell, 2018, 45, 226-244.e8.	3.1	46
56	The expanding neurological phenotype of DNM1L-related disorders. Brain, 2018, 141, e28-e28.	3.7	7
57	Looking beyond the exome: a phenotype-first approach to molecular diagnostic resolution in rare and undiagnosed diseases. Genetics in Medicine, 2018, 20, 464-469.	1.1	42
58	Pleiotropic neuropathological and biochemical alterations associated with Myo5a mutation in a rat Model. Brain Research, 2018, 1679, 155-170.	1.1	14
59	Genetic strategies to tackle neurological diseases in fruit flies. Current Opinion in Neurobiology, 2018, 50, 24-32.	2.0	61
60	Neuron-Subtype-Specific Expression, Interaction Affinities, and Specificity Determinants of DIP/Dpr Cell Recognition Proteins. Neuron, 2018, 100, 1385-1400.e6.	3.8	65
61	Interactions between the Ig-Superfamily Proteins DIP-α and Dpr6/10 Regulate Assembly of Neural Circuits. Neuron, 2018, 100, 1369-1384.e6.	3.8	64
62	Comparative Flavivirus-Host Protein Interaction Mapping Reveals Mechanisms of Dengue and Zika Virus Pathogenesis. Cell, 2018, 175, 1931-1945.e18.	13.5	252
63	Using <i>Drosophila</i> to study mechanisms of hereditary hearing loss. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	24
64	Bi-allelic Loss-of-Function Variants in DNMBP Cause Infantile Cataracts. American Journal of Human Genetics, 2018, 103, 568-578.	2.6	29
65	Effect of Genetic Diagnosis on Patients with Previously Undiagnosed Disease. New England Journal of Medicine, 2018, 379, 2131-2139.	13.9	261
66	Visual impairment and progressive phthisis bulbi caused by recessive pathogenic variant in MARK3. Human Molecular Genetics, 2018, 27, 2703-2711.	1.4	21
67	A gene-specific T2A-GAL4 library for Drosophila. ELife, 2018, 7, .	2.8	203
68	IRF2BPL Is Associated with Neurological Phenotypes. American Journal of Human Genetics, 2018, 103, 245-260.	2.6	69
69	The Psychiatric Cell Map Initiative: A Convergent Systems Biological Approach to Illuminating Key Molecular Pathways in Neuropsychiatric Disorders. Cell, 2018, 174, 505-520.	13.5	108
70	A kinase-dependent feedforward loop affects CREBB stability and long term memory formation. ELife, 2018, 7, .	2.8	29
71	Functional variants in TBX2 are associated with a syndromic cardiovascular and skeletal developmental disorder. Human Molecular Genetics, 2018, 27, 2454-2465.	1.4	54
72	Phospholipase PLA2G6, a Parkinsonism-Associated Gene, Affects Vps26 and Vps35, Retromer Function, and Ceramide Levels, Similar to α-Synuclein Gain. Cell Metabolism, 2018, 28, 605-618.e6.	7.2	133

#	Article	IF	CITATIONS
73	An expanded toolkit for gene tagging based on MiMIC and scarless CRISPR tagging in Drosophila. ELife, 2018, 7, .	2.8	59
74	Developmental Expression of 4-Repeat-Tau Induces Neuronal Aneuploidy in Drosophila Tauopathy Models. Scientific Reports, 2017, 7, 40764.	1.6	28
75	The Undiagnosed Diseases Network: Accelerating Discovery about Health and Disease. American Journal of Human Genetics, 2017, 100, 185-192.	2.6	142
76	A Recurrent De Novo Variant in NACC1 Causes a Syndrome Characterized by Infantile Epilepsy, Cataracts, and Profound Developmental Delay. American Journal of Human Genetics, 2017, 100, 343-351.	2.6	35
77	MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome. American Journal of Human Genetics, 2017, 100, 843-853.	2.6	181
78	Lysosomal Degradation Is Required for Sustained Phagocytosis of Bacteria by Macrophages. Cell Host and Microbe, 2017, 21, 719-730.e6.	5.1	79
79	Building dialogues between clinical and biomedical research through cross-species collaborations. Seminars in Cell and Developmental Biology, 2017, 70, 49-57.	2.3	16
80	A Syndromic Neurodevelopmental Disorder Caused by De Novo Variants in EBF3. American Journal of Human Genetics, 2017, 100, 128-137.	2.6	96
81	Loss of Nardilysin, a Mitochondrial Co-chaperone for α-Ketoglutarate Dehydrogenase, Promotes mTORC1 Activation and Neurodegeneration. Neuron, 2017, 93, 115-131.	3.8	95
82	The Glia-Neuron Lactate Shuttle and Elevated ROS Promote Lipid Synthesis in Neurons and Lipid Droplet Accumulation in Glia via APOE/D. Cell Metabolism, 2017, 26, 719-737.e6.	7.2	333
83	Model Organisms Facilitate Rare Disease Diagnosis and Therapeutic Research. Genetics, 2017, 207, 9-27.	1.2	165
84	The Krebs Cycle Enzyme Isocitrate Dehydrogenase 3A Couples Mitochondrial Metabolism to Synaptic Transmission. Cell Reports, 2017, 21, 3794-3806.	2.9	31
85	In Vivo Animal Modeling. , 2017, , 211-234.		2
86	Amyotrophic Lateral Sclerosis Pathogenesis Converges on Defects in Protein Homeostasis Associated with TDP-43 Mislocalization and Proteasome-Mediated Degradation Overload. Current Topics in Developmental Biology, 2017, 121, 111-171.	1.0	26
87	Peroxisomal biogenesis is genetically and biochemically linked to carbohydrate metabolism in Drosophila and mouse. PLoS Genetics, 2017, 13, e1006825.	1.5	31
88	Clinically severe CACNA1A alleles affect synaptic function and neurodegeneration differentially. PLoS Genetics, 2017, 13, e1006905.	1.5	80
89	Gene Tagging Strategies To Assess Protein Expression, Localization, and Function in. Genetics, 2017, 207, 389-412.	1.2	45
90	A cell cycle-independent, conditional gene inactivation strategy for differentially tagging wild-type and mutant cells. ELife, 2017, 6, .	2.8	23

#	Article	IF	CITATIONS
91	Loss of Frataxin induces iron toxicity, sphingolipid synthesis, and Pdk1/Mef2 activation, leading to neurodegeneration. ELife, 2016, 5, .	2.8	74
92	Uncoupling neuronal death and dysfunction in Drosophila models of neurodegenerative disease. Acta Neuropathologica Communications, 2016, 4, 62.	2.4	77
93	<i>Drosophila</i> tools and assays for the study of human diseases. DMM Disease Models and Mechanisms, 2016, 9, 235-244.	1.2	367
94	De Novo Truncating Variants in ASXL2 Are Associated with a Unique and Recognizable Clinical Phenotype. American Journal of Human Genetics, 2016, 99, 991-999.	2.6	68
95	Recurrent De Novo and Biallelic Variation of ATAD3A , Encoding a Mitochondrial Membrane Protein, Results in Distinct Neurological Syndromes. American Journal of Human Genetics, 2016, 99, 831-845.	2.6	146
96	Missense variants in the middle domain of <i>DNM1L</i> in cases of infantile encephalopathy alter peroxisomes and mitochondria when assayed in <i>Drosophila</i> . Human Molecular Genetics, 2016, 25, 1846-1856.	1.4	62
97	WAC Regulates mTOR Activity by Acting as an Adaptor for the TTT and Pontin/Reptin Complexes. Developmental Cell, 2016, 36, 139-151.	3.1	47
98	NMNAT2:HSP90 Complex Mediates Proteostasis in Proteinopathies. PLoS Biology, 2016, 14, e1002472.	2.6	105
99	Ubr3, a Novel Modulator of Hh Signaling Affects the Degradation of Costal-2 and Kif7 through Poly-ubiquitination. PLoS Genetics, 2016, 12, e1006054.	1.5	17
100	Rare Functional Variant in TM2D3 is Associated with Late-Onset Alzheimer's Disease. PLoS Genetics, 2016, 12, e1006327.	1.5	47
101	The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals. ELife, 2016, 5, .	2.8	23
102	Loss of Frataxin activates the iron/sphingolipid/PDK1/Mef2 pathway in mammals. ELife, 2016, 5, .	2.8	61
103	FlyVar: a database for genetic variation in Drosophila melanogaster. Database: the Journal of Biological Databases and Curation, 2015, 2015, .	1.4	10
104	A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila. ELife, 2015, 4, .	2.8	320
105	Control of Synaptic Connectivity by a Network of Drosophila IgSF Cell Surface Proteins. Cell, 2015, 163, 1770-1782.	13.5	155
106	Ig Superfamily Ligand and Receptor Pairs Expressed in Synaptic Partners in Drosophila. Cell, 2015, 163, 1756-1769.	13.5	184
107	Huntingtin functions as a scaffold for selective macroautophagy. Nature Cell Biology, 2015, 17, 262-275.	4.6	336
108	Glial Lipid Droplets and ROS Induced by Mitochondrial Defects Promote Neurodegeneration. Cell, 2015, 160, 177-190.	13.5	617

#	Article	IF	CITATIONS
109	Fruit Flies in Biomedical Research. Genetics, 2015, 199, 639-653.	1.2	149
110	Safeguarding gene drive experiments in the laboratory. Science, 2015, 349, 927-929.	6.0	254
111	A Voltage-Gated Calcium Channel Regulates Lysosomal Fusion with Endosomes and Autophagosomes and Is Required for Neuronal Homeostasis. PLoS Biology, 2015, 13, e1002103.	2.6	85
112	The retromer complex in development and disease. Development (Cambridge), 2015, 142, 2392-2396.	1.2	73
113	Morgan's Legacy: Fruit Flies and the Functional Annotation of Conserved Genes. Cell, 2015, 163, 12-14.	13.5	79
114	Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure. Nature Communications, 2015, 6, 8245.	5.8	55
115	Pri sORF peptides induce selective proteasome-mediated protein processing. Science, 2015, 349, 1356-1358.	6.0	90
116	Impaired Mitochondrial Energy Production Causes Light-Induced Photoreceptor Degeneration Independent of Oxidative Stress. PLoS Biology, 2015, 13, e1002197.	2.6	48
117	A genetic toolkit for tagging intronic MiMIC containing genes. ELife, 2015, 4, .	2.8	134
118	The Retromer Complex Is Required for Rhodopsin Recycling and Its Loss Leads to Photoreceptor Degeneration. PLoS Biology, 2014, 12, e1001847.	2.6	75
119	Drosophila Tempura, a Novel Protein Prenyltransferase α Subunit, Regulates Notch Signaling Via Rab1 and Rab11. PLoS Biology, 2014, 12, e1001777.	2.6	45
120	Syncrip/hnRNP Q influences synaptic transmission and regulates BMP signaling at the <i>Drosophila</i> neuromuscular synapse. Biology Open, 2014, 3, 839-849.	0.6	30
121	A TRPV Channel in Drosophila Motor Neurons Regulates Presynaptic Resting Ca2+ Levels, Synapse Growth, and Synaptic Transmission. Neuron, 2014, 84, 764-777.	3.8	68
122	The amyotrophic lateral sclerosis 8 protein, VAP, is required for ER protein quality control. Human Molecular Genetics, 2014, 23, 1975-1989.	1.4	59
123	Shared mechanisms between Drosophila peripheral nervous system development and human neurodegenerative diseases. Current Opinion in Neurobiology, 2014, 27, 158-164.	2.0	25
124	Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster. Methods, 2014, 68, 15-28.	1.9	65
125	A Mitocentric View of Parkinson's Disease. Annual Review of Neuroscience, 2014, 37, 137-159.	5.0	115
126	A Drosophila Genetic Resource of Mutants to Study Mechanisms Underlying Human Genetic Diseases. Cell, 2014, 159, 200-214.	13.5	322

#	Article	IF	CITATIONS
127	Introduction to Notch Signaling. Methods in Molecular Biology, 2014, 1187, 1-14.	0.4	78
128	Large-scale identification of chemically induced mutations in <i>Drosophila melanogaster</i> . Genome Research, 2014, 24, 1707-1718.	2.4	67
129	Survival of the Fittest Tools. Genetics, 2014, 198, 427-428.	1.2	3
130	Mitochondrial fusion but not fission regulates larval growth and synaptic development through steroid hormone production. ELife, 2014, 3, .	2.8	109
131	miR-9a Minimizes the Phenotypic Impact of Genomic Diversity by Buffering a Transcription Factor. Cell, 2013, 155, 1556-1567.	13.5	99
132	NMNATs, evolutionarily conserved neuronal maintenance factors. Trends in Neurosciences, 2013, 36, 632-640.	4.2	85
133	Rhodopsin homeostasis and retinal degeneration: lessons from the fly. Trends in Neurosciences, 2013, 36, 652-660.	4.2	68
134	VAPB/ALS8 MSP Ligands Regulate Striated Muscle Energy Metabolism Critical for Adult Survival in Caenorhabditis elegans. PLoS Genetics, 2013, 9, e1003738.	1.5	35
135	<i>dEHBP1</i> regulates Scabrous secretion during Notch mediated lateral inhibition. Journal of Cell Science, 2013, 126, 3686-96.	1.2	10
136	The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit. Journal of Cell Biology, 2013, 200, 807-820.	2.3	56
137	The dynamin-binding domains of Dap160/Intersectin affect bulk membrane retrieval in synapses. Journal of Cell Science, 2013, 126, 1021-31.	1.2	25
138	Protein Phosphatase 1ß Limits Ring Canal Constriction during Drosophila Germline Cyst Formation. PLoS ONE, 2013, 8, e70502.	1.1	27
139	Crag Is a GEF for Rab11 Required for Rhodopsin Trafficking and Maintenance of Adult Photoreceptor Cells. PLoS Biology, 2012, 10, e1001438.	2.6	93
140	Stringent Analysis of Gene Function and Protein–Protein Interactions Using Fluorescently Tagged Genes. Genetics, 2012, 190, 931-940.	1.2	92
141	An Assay to Detect <i>In Vivo</i> Y Chromosome Loss in <i>Drosophila</i> Wing Disc Cells. G3: Genes, Genomes, Genetics, 2012, 2, 1095-1102.	0.8	14
142	<i>dEHBP1</i> controls exocytosis and recycling of Delta during asymmetric divisions. Journal of Cell Biology, 2012, 196, 65-83.	2.3	35
143	Spectraplakins Promote Microtubule-Mediated Axonal Growth by Functioning As Structural Microtubule-Associated Proteins and EB1-Dependent +TIPs (Tip Interacting Proteins). Journal of Neuroscience, 2012, 32, 9143-9158.	1.7	104
144	A Mutation in EGF Repeat-8 of Notch Discriminates Between Serrate/Jagged and Delta Family Ligands. Science, 2012, 338, 1229-1232.	6.0	92

#	Article	IF	CITATIONS
145	Secreted VAPB/ALS8 Major Sperm Protein Domains Modulate Mitochondrial Localization and Morphology via Growth Cone Guidance Receptors. Developmental Cell, 2012, 22, 348-362.	3.1	68
146	Genome-Wide Manipulations of Drosophila melanogaster with Transposons, Flp Recombinase, and ΦC31 Integrase. Methods in Molecular Biology, 2012, 859, 203-228.	0.4	65
147	Probing Mechanisms That Underlie Human Neurodegenerative Diseases inDrosophila. Annual Review of Genetics, 2012, 46, 371-396.	3.2	96
148	<i>Drosophila</i> Neuroligin 2 is Required Presynaptically and Postsynaptically for Proper Synaptic Differentiation and Synaptic Transmission. Journal of Neuroscience, 2012, 32, 16018-16030.	1.7	60
149	Mutations in the Mitochondrial Methionyl-tRNA Synthetase Cause a Neurodegenerative Phenotype in Flies and a Recessive Ataxia (ARSAL) in Humans. PLoS Biology, 2012, 10, e1001288.	2.6	147
150	MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nature Methods, 2011, 8, 737-743.	9.0	620
151	Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Human Molecular Genetics, 2011, 20, 3642-3652.	1.4	200
152	The <i>Drosophila</i> Gene Disruption Project: Progress Using Transposons With Distinctive Site Specificities. Genetics, 2011, 188, 731-743.	1.2	330
153	Dueling Ca2+ Sensors in Neurotransmitter Release. Cell, 2011, 147, 491-493.	13.5	9
154	Rich Regulates Target Specificity of Photoreceptor Cells and N-Cadherin Trafficking in the Drosophila Visual System via Rab6. Neuron, 2011, 71, 447-459.	3.8	29
155	Genetic Manipulation of Genes and Cells in the Nervous System of the Fruit Fly. Neuron, 2011, 72, 202-230.	3.8	395
156	A cis-regulatory map of the Drosophila genome. Nature, 2011, 471, 527-531.	13.7	477
157	The BMP signaling pathway at the Drosophila neuromuscular junction and its links to neurodegenerative diseases. Current Opinion in Neurobiology, 2011, 21, 182-188.	2.0	82
158	<i>Drosophila P</i> elements preferentially transpose to replication origins. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15948-15953.	3.3	93
159	Drosophila Ten-m and Filamin Affect Motor Neuron Growth Cone Guidance. PLoS ONE, 2011, 6, e22956.	1.1	48
160	100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nature Reviews Neuroscience, 2010, 11, 514-522.	4.9	358
161	A Molecularly Defined Duplication Set for the X Chromosome of <i>Drosophila melanogaster</i> . Genetics, 2010, 186, 1111-1125.	1.2	97
162	Identification of Functional Elements and Regulatory Circuits by <i>Drosophila</i> modENCODE. Science, 2010, 330, 1787-1797.	6.0	1,124

#	Article	IF	CITATIONS
163	A Genome-wide Drosophila Screen for Heat Nociception Identifies α2δ3 as an Evolutionarily Conserved Pain Gene. Cell, 2010, 143, 628-638.	13.5	283
164	Endocytosis and Intracellular Trafficking of Notch and Its Ligands. Current Topics in Developmental Biology, 2010, 92, 165-200.	1.0	113
165	The <i>Drosophila</i> deoxyhypusine hydroxylase homologue <i>nero</i> and its target eIF5A are required for cell growth and the regulation of autophagy. Journal of Cell Biology, 2009, 185, 1181-1194.	2.3	66
166	Cell Adhesion, the Backbone of the Synapse: "Vertebrate" and "Invertebrate" Perspectives. Cold Spring Harbor Perspectives in Biology, 2009, 1, a003079-a003079.	2.3	89
167	Importin 13 Regulates Neurotransmitter Release at the <i>Drosophila</i> Neuromuscular Junction. Journal of Neuroscience, 2009, 29, 5628-5639.	1.7	24
168	A Notch updated. Journal of Cell Biology, 2009, 184, 621-629.	2.3	159
169	A Novel Neuronal Pathway for Visually Guided Escape in <i>Drosophila melanogaster</i> . Journal of Neurophysiology, 2009, 102, 875-885.	0.9	100
170	Sequoia regulates cell fate decisions in the external sensory organs of adult Drosophila. EMBO Reports, 2009, 10, 636-641.	2.0	13
171	The Arp2/3 complex and WASp are required for apical trafficking of Delta into microvilli during cell fate specification of sensory organ precursors. Nature Cell Biology, 2009, 11, 815-824.	4.6	98
172	Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nature Methods, 2009, 6, 431-434.	9.0	375
173	A Synaptic Vesicle-Associated Ca2+ Channel Promotes Endocytosis and Couples Exocytosis to Endocytosis. Cell, 2009, 138, 947-960.	13.5	138
174	Tweek, an Evolutionarily Conserved Protein, Is Required for Synaptic Vesicle Recycling. Neuron, 2009, 63, 203-215.	3.8	104
175	Tilting the Balance between Facilitatory and Inhibitory Functions of Mammalian and Drosophila Complexins Orchestrates Synaptic Vesicle Exocytosis. Neuron, 2009, 64, 367-380.	3.8	101
176	Rab3 GTPase Lands Bruchpilot. Neuron, 2009, 64, 595-597.	3.8	5
177	The <i>Drosophila</i> deoxyhypusine hydroxylase homologue <i>nero</i> and its target eIF5A are required for cell growth and the regulation of autophagy. Journal of Experimental Medicine, 2009, 206, i14-i14.	4.2	0
178	NAD synthase NMNAT acts as a chaperone to protect against neurodegeneration. Nature, 2008, 452, 887-891.	13.7	193
179	Suppression of Neurodegeneration and Increased Neurotransmission Caused by Expanded Full-Length Huntingtin Accumulating in the Cytoplasm. Neuron, 2008, 57, 27-40.	3.8	143
180	Rumi Is a CAP10 Domain Glycosyltransferase that Modifies Notch and Is Required for Notch Signaling. Cell, 2008, 132, 247-258.	13.5	272

#	Article	IF	CITATIONS
181	The Amyotrophic Lateral Sclerosis 8 Protein VAPB Is Cleaved, Secreted, and Acts as a Ligand for Eph Receptors. Cell, 2008, 133, 963-977.	13.5	198
182	V-ATPase V0 Sector Subunit a1 in Neurons Is a Target of Calmodulin. Journal of Biological Chemistry, 2008, 283, 294-300.	1.6	33
183	Ero1L, a thiol oxidase, is required for Notch signaling through cysteine bridge formation of the Lin12-Notch repeats in <i>Drosophila melanogaster </i> . Journal of Cell Biology, 2008, 182, 1113-1125.	2.3	64
184	<i>straightjacket</i> is required for the synaptic stabilization of <i>cacophony</i> , a voltage-gated calcium channel α1 subunit. Journal of Cell Biology, 2008, 181, 157-170.	2.3	61
185	FM 1-43 Labeling of Synaptic Vesicle Pools at the Drosophila Neuromuscular Junction. Methods in Molecular Biology, 2008, 440, 349-369.	0.4	100
186	Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development. Journal of Cell Biology, 2007, 178, 309-322.	2.3	117
187	Huntingtin-interacting protein 14, a palmitoyl transferase required for exocytosis and targeting of CSP to synaptic vesicles. Journal of Cell Biology, 2007, 179, 1481-1496.	2.3	97
188	Thirty-One Flavors of Drosophila Rab Proteins. Genetics, 2007, 176, 1307-1322.	1.2	264
189	Transgenesis upgrades for <i>Drosophila melanogaster</i> . Development (Cambridge), 2007, 134, 3571-3584.	1.2	133
190	P[acman]: A BAC Transgenic Platform for Targeted Insertion of Large DNA Fragments in D. melanogaster. Science, 2006, 314, 1747-1751.	6.0	1,242
191	Activity-Independent Prespecification of Synaptic Partners in the Visual Map of Drosophila. Current Biology, 2006, 16, 1835-1843.	1.8	96
192	Internalization is required for proper Wingless signaling in Drosophila melanogaster. Journal of Cell Biology, 2006, 173, 95-106.	2.3	142
193	Senseless and Daughterless confer neuronal identity to epithelial cells in the Drosophila wing margin. Development (Cambridge), 2006, 133, 1683-1692.	1.2	62
194	The Nicotinic Acetylcholine Receptor Dα7 Is Required for an Escape Behavior inDrosophila. PLoS Biology, 2006, 4, e63.	2.6	124
195	Drosophila NMNAT Maintains Neural Integrity Independent of Its NAD Synthesis Activity. PLoS Biology, 2006, 4, e416.	2.6	160
196	Senseless physically interacts with proneural proteins and functions as a transcriptional co-activator. Development (Cambridge), 2006, 133, 1979-1989.	1.2	62
197	Fighting anthrax with flies. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3013-3014.	3.3	1
198	Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nature Structural and Molecular Biology, 2005, 12, 879-885.	3.6	245

#	Article	IF	CITATIONS
199	Emerging technologies for gene manipulation in Drosophila melanogaster. Nature Reviews Genetics, 2005, 6, 167-178.	7.7	186
200	Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation. Genes and Development, 2005, 19, 2412-2417.	2.7	267
201	Aberrant lysosomal carbohydrate storage accompanies endocytic defects and neurodegeneration in Drosophila benchwarmer. Journal of Cell Biology, 2005, 170, 127-139.	2.3	128
202	Charlatan, a Zn-finger transcription factor, establishes a novel level of regulation of the proneural achaete/scute genes of Drosophila. Development (Cambridge), 2005, 132, 1211-1222.	1.2	34
203	Bonus, a Drosophila TIF1 Homolog, Is a Chromatin-Associated Protein That Acts as a Modifier of Position-Effect Variegation. Genetics, 2005, 169, 783-794.	1.2	22
204	The v-ATPase V 0 Subunit a1 Is Required for a Late Step in Synaptic Vesicle Exocytosis in Drosophila. Cell, 2005, 121, 607-620.	13.5	297
205	The AXH Domain of Ataxin-1 Mediates Neurodegeneration through Its Interaction with Gfi-1/Senseless Proteins. Cell, 2005, 122, 633-644.	13.5	189
206	Sec15, a Component of the Exocyst, Promotes Notch Signaling during the Asymmetric Division of Drosophila Sensory Organ Precursors. Developmental Cell, 2005, 9, 351-363.	3.1	182
207	Mutations in Drosophila sec15 Reveal a Function in Neuronal Targeting for a Subset of Exocyst Components. Neuron, 2005, 46, 219-232.	3.8	129
208	Synaptic Mitochondria Are Critical for Mobilization of Reserve Pool Vesicles at Drosophila Neuromuscular Junctions. Neuron, 2005, 47, 365-378.	3.8	734
209	Growth Factor Independence-1 Is Expressed in Primary Human Neuroendocrine Lung Carcinomas and Mediates the Differentiation of Murine Pulmonary Neuroendocrine Cells. Cancer Research, 2004, 64, 6874-6882.	0.4	71
210	The Architecture of the Active Zone in the Presynaptic Nerve Terminal. Physiology, 2004, 19, 262-270.	1.6	244
211	Gfi/Pag-3/Senseless Zinc Finger Proteins: a Unifying Theme?. Molecular and Cellular Biology, 2004, 24, 8803-8812.	1.1	47
212	Hauling t-SNAREs on the microtubule highway. Nature Cell Biology, 2004, 6, 918-919.	4.6	8
213	Flying in the face of total disruption. Nature Genetics, 2004, 36, 211-212.	9.4	10
214	The ins and outs of Wingless signaling. Trends in Cell Biology, 2004, 14, 45-53.	3.6	82
215	Q & A. Current Biology, 2004, 14, R218.	1.8	1
216	The BDGP Gene Disruption Project. Genetics, 2004, 167, 761-781.	1.2	774

#	Article	IF	CITATIONS
217	Dap160/Intersectin Acts as a Stabilizing Scaffold Required for Synaptic Development and Vesicle Endocytosis. Neuron, 2004, 43, 193-205.	3.8	225
218	Invertebrate Clia. , 2004, , 199-222.		1
219	Quantitative Analysis of Bristle Number in Drosophila Mutants Identifies Genes Involved in Neural Development. Current Biology, 2003, 13, 1388-1396.	1.8	113
220	Discs Lost, a Novel Multi-PDZ Domain Protein, Establishes and Maintains Epithelial Polarity. Cell, 2003, 115, 765-766.	13.5	2
221	Synaptotagmin I, a Ca2+ sensor for neurotransmitter release. Trends in Neurosciences, 2003, 26, 413-422.	4.2	194
222	Synaptojanin Is Recruited by Endophilin to Promote Synaptic Vesicle Uncoating. Neuron, 2003, 40, 733-748.	3.8	376
223	The zinc finger transcription factorGfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development (Cambridge), 2003, 130, 221-232.	1.2	233
224	Senseless acts as a binary switch during sensory organ precursor selection. Genes and Development, 2003, 17, 2966-2978.	2.7	126
225	Mapping Drosophila mutations with molecularly defined P element insertions. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10860-10865.	3.3	89
226	Endophilin Promotes a Late Step in Endocytosis at Glial Invaginations inDrosophilaPhotoreceptor Terminals. Journal of Neuroscience, 2003, 23, 10732-10744.	1.7	86
227	When cell biology meets development: endocytic regulation of signaling pathways. Genes and Development, 2002, 16, 1314-1336.	2.7	194
228	Shar-pei mediates cell proliferation arrest during imaginal disc growth inDrosophila. Development (Cambridge), 2002, 129, 5719-5730.	1.2	302
229	Hrs Regulates Endosome Membrane Invagination and Tyrosine Kinase Receptor Signaling in Drosophila. Cell, 2002, 108, 261-269.	13.5	412
230	Endophilin Mutations Block Clathrin-Mediated Endocytosis but Not Neurotransmitter Release. Cell, 2002, 109, 101-112.	13.5	305
231	Drosophila VAP-33A Directs Bouton Formation at Neuromuscular Junctions in a Dosage-Dependent Manner. Neuron, 2002, 35, 291-306.	3.8	181
232	Numb. Developmental Cell, 2002, 3, 155-156.	3.1	32
233	Meaningless minis? Mechanisms of neurotransmitter-receptor clustering. Trends in Neurosciences, 2002, 25, 383-385.	4.2	15
234	Drosophila atonal Fully Rescues the Phenotype of Math1 Null Mice. Current Biology, 2002, 12, 1611-1616.	1.8	104

#	Article	IF	CITATIONS
235	Enhancement of presynaptic calcium current by cysteine string protein. Journal of Physiology, 2002, 538, 383-389.	1.3	47
236	Drosophila Crumbs is a positional cue in photoreceptor adherens junctions and rhabdomeres. Nature, 2002, 416, 178-183.	13.7	251
237	Synaptic vesicle retrieval: still time for a kiss. Nature Cell Biology, 2002, 4, E245-E248.	4.6	15
238	Mapping and identification of essential gene functions on the X chromosome ofDrosophila. EMBO Reports, 2002, 3, 34-38.	2.0	105
239	pRIMing synaptic vesicles for fusion. Nature Neuroscience, 2001, 4, 965-966.	7.1	5
240	Axon-Glia Interactions and the Domain Organization of Myelinated Axons Requires Neurexin IV/Caspr/Paranodin. Neuron, 2001, 30, 369-383.	3.8	510
241	Proprioceptor Pathway Development Is Dependent on MATH1. Neuron, 2001, 30, 411-422.	3.8	280
242	senseless Repression of rough Is Required for R8 Photoreceptor Differentiation in the Developing Drosophila Eye. Neuron, 2001, 32, 403-414.	3.8	121
243	Bonus, a Drosophila Homolog of TIF1 Proteins, Interacts with Nuclear Receptors and Can Inhibit βFTZ-F1-Dependent Transcription. Molecular Cell, 2001, 7, 753-765.	4.5	88
244	Targeted Mutations in the Syntaxin H3 Domain Specifically Disrupt SNARE Complex Function in Synaptic Transmission. Journal of Neuroscience, 2001, 21, 9142-9150.	1.7	47
245	The ROP-Syntaxin interaction inhibits neurotransmitter release. European Journal of Cell Biology, 2001, 80, 196-199.	1.6	17
246	A role for Drosophila SMC4 in the resolution of sister chromatids in mitosis. Current Biology, 2001, 11, 295-307.	1.8	176
247	Drosophila <i>Lyra</i> Mutations Are Gain-of-Function Mutations of <i>senseless</i> . Genetics, 2001, 157, 307-315.	1.2	30
248	NEUROSCIENCE: The Meaning of a Mini. Science, 2001, 293, 443-444.	6.0	6
249	Untying the Gordian Knot of Cytokinesis. Journal of Cell Biology, 2000, 148, 843-848.	2.3	77
250	atonal Regulates Neurite Arborization but Does Not Act as a Proneural Gene in the Drosophila Brain. Neuron, 2000, 25, 549-561.	3.8	156
251	A Genome-Wide Search for Synaptic Vesicle Cycle Proteins in Drosophila. Neuron, 2000, 26, 45-50.	3.8	105
252	Senseless, a Zn Finger Transcription Factor, Is Necessary and Sufficient for Sensory Organ Development in Drosophila. Cell, 2000, 102, 349-362.	13.5	473

#	Article	IF	CITATIONS
253	Tissue distribution of PEBBLE RNA and Pebble protein during Drosophila embryonic development. Mechanisms of Development, 2000, 90, 269-273.	1.7	26
254	Mutations Affecting the Development of the Peripheral Nervous System in Drosophila: A Molecular Screen for Novel Proteins. Genetics, 2000, 156, 1691-1715.	1.2	68
255	Doing the MATH: is the mouse a good model for fly development?. Genes and Development, 2000, 14, 1852-1865.	2.7	114
256	Ten Years of Enhancer Detection: Lessons from the Fly. Plant Cell, 1999, 11, 2271.	3.1	0
257	Ten Years of Enhancer Detection: Lessons from the Fly. Plant Cell, 1999, 11, 2271-2281.	3.1	89
258	Math1: An Essential Gene for the Generation of Inner Ear Hair Cells. Science, 1999, 284, 1837-1841.	6.0	1,042
259	Tailoring Uniform Coats for Synaptic Vesicles during Endocytosis. Neuron, 1999, 23, 419-422.	3.8	27
260	Syntaxin 1A Interacts with Multiple Exocytic Proteins to Regulate Neurotransmitter Release In Vivo. Neuron, 1999, 23, 593-605.	3.8	189
261	Discs Lost, a Novel Multi-PDZ Domain Protein, Establishes and Maintains Epithelial Polarity. Cell, 1999, 96, 833-845.	13.5	273
262	A putative exchange factor for Rho1 GTPase is required for initiation of cytokinesis in Drosophila. Genes and Development, 1999, 13, 2301-2314.	2.7	250
263	ROP, the Drosophila Sec1 homolog, interacts with syntaxin and regulates neurotransmitter release in a dosage-dependent manner. EMBO Journal, 1998, 17, 127-139.	3.5	173
264	Neurexin IV, caspr and paranodin—novel members of the neurexin family: encounters of axons and glia. Trends in Neurosciences, 1998, 21, 444-449.	4.2	122
265	Synaptic Vesicle Size and Number Are Regulated by a Clathrin Adaptor Protein Required for Endocytosis. Neuron, 1998, 21, 1465-1475.	3.8	397
266	The Fruit Fly: A Model Organism to Study the Genetics of Alcohol Abuse and Addiction?. Cell, 1998, 93, 909-912.	13.5	39
267	skittles, a Drosophila Phosphatidylinositol 4-Phosphate 5-Kinase, Is Required for Cell Viability, Germline Development and Bristle Morphology, But Not for Neurotransmitter Release. Genetics, 1998, 150, 1527-1537.	1.2	70
268	Deciphering the Function of Neurexins at Cellular Junctions. Journal of Cell Biology, 1997, 137, 793-796.	2.3	28
269	Localization of BRRN1, the Human Homologue ofDrosophila barr,to 2q11.2. Genomics, 1997, 46, 311-313.	1.3	9
270	Genetic dissection of synaptic transmission in Drosophila. Current Opinion in Neurobiology, 1997, 7, 624-630.	2.0	31

#	Article	IF	CITATIONS
271	Math1 is essential for genesis of cerebellar granule neurons. Nature, 1997, 390, 169-172.	13.7	636
272	<i>P</i> -Element Insertion Alleles of Essential Genes on the Third Chromosome of <i>Drosophila melanogaster:</i> Mutations Affecting Embryonic PNS Development. Genetics, 1997, 147, 1723-1741.	1.2	87
273	A Drosophila Neurexin Is Required for Septate Junction and Blood-Nerve Barrier Formation and Function. Cell, 1996, 87, 1059-1068.	13.5	390
274	Chromatid Segregation at Anaphase Requires the barren Product, a Novel Chromosome-Associated Protein That Interacts with Topoisomerase II. Cell, 1996, 87, 1103-1114.	13.5	276
275	Invertebrate versus vertebrate neurogenesis: Variations on the same theme?. Genesis, 1996, 18, 1-10.	3.3	20
276	Evolutionary conservation of sequence and expression of the bHLH protein Atonal suggests a conserved role in neurogenesis. Human Molecular Genetics, 1996, 5, 1207-1216.	1.4	151
277	<i>gutfeeling</i> , a Drosophila Gene Encoding an Antizyme-Like Protein, Is Required for Late Differentiation of Neurons and Muscles. Genetics, 1996, 144, 183-196.	1.2	30
278	Drosophila <i>syntaxin</i> Is Required for Cell Viability and May Function in Membrane Formation and Stabilization. Genetics, 1996, 144, 1713-1724.	1.2	53
279	Flybase: a virtual Drosophila cornucopia. Trends in Genetics, 1995, 11, 456-457.	2.9	12
280	Presynaptic proteins involved in exocytosis inDrosophila melanogaster: A genetic analysis. Invertebrate Neuroscience, 1995, 1, 3-13.	1.8	19
281	Mutations in neuromusculin, a gene encoding a cell adhesion molecule, cause nervous system defects. Roux's Archives of Developmental Biology, 1995, 204, 259-270.	1.2	6
282	Syntaxin and synaptobrevin function downstream of vesicle docking in drosophila. Neuron, 1995, 15, 663-673.	3.8	353
283	Genetic and electrophysiological studies of drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission. Cell, 1995, 80, 311-320.	13.5	294
284	Synaptotagmin controls and modulates synaptic-vesicle fusion in a Ca2+-dependent manner. Trends in Neurosciences, 1995, 18, 177-183.	4.2	140
285	Rop, a drosophila homolog of yeast Sec1 and vertebrate n-Sect/Munc-18 proteins, is a negative regulator of neurotransmitter release in vivo. Neuron, 1994, 13, 1099-1108.	3.8	175
286	Mutations affecting the pattern of the PNS in drosophila reveal novel aspects of neuronal development. Neuron, 1994, 13, 269-287.	3.8	143
287	Absence of synaptotagmin disrupts excitation-secretion coupling during synaptic transmission Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10727-10731.	3.3	186
288	Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusions are altered in Drosophila synaptotagmin mutants Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10888-10892.	3.3	266

#	Article	IF	CITATIONS
289	Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca2+-activated neurotransmitter release. Cell, 1993, 74, 1125-1134.	13.5	451
290	Embryonic cAMP and developmental potential in Drosophila melanogaster. Roux's Archives of Developmental Biology, 1992, 201, 257-264.	1.2	4
291	Dissecting the complexity of the nervous system by enhancer detection. BioEssays, 1990, 12, 199-204.	1.2	30
292	Position Effects on Eukaryotic Gene Expression. Annual Review of Cell Biology, 1990, 6, 679-714.	26.0	373
293	Primordium specific requirement of the homeotic gene fork head in the developing gut of the Drosophila embryo. Roux's Archives of Developmental Biology, 1989, 198, 201-210.	1.2	68
294	Two Drosophila learning mutants, dunce and rutabaga, provide evidence of a maternal role for cAMP on embryogenesis. Developmental Biology, 1987, 121, 432-444.	0.9	73
295	Sexual Hyperactivity and Reduced Longevity of <i>dunce</i> Females of <i>Drosophila melanogaster</i> . Genetics, 1987, 115, 153-160.	1.2	54
296	<i>Cindr</i> , the <i>Drosophila</i> Homolog of the <i>CD2AP</i> Alzheimer's Disease Susceptibility Gene, is Required for Synaptic Transmission and Proteostasis. SSRN Electronic Journal, 0, , .	0.4	1
297	An expanded toolkit for Drosophila gene tagging using synthesized homology donor constructs for CRISPR-mediated homologous recombination. ELife, 0, 11, .	2.8	25