Hugo J Bellen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/474996/publications.pdf

Version: 2024-02-01

4342 2544 36,201 297 96 173 citations h-index g-index papers 334 334 334 33563 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	P[acman]: A BAC Transgenic Platform for Targeted Insertion of Large DNA Fragments in D. melanogaster. Science, 2006, 314, 1747-1751.	12.6	1,242
2	Identification of Functional Elements and Regulatory Circuits by <i>Drosophila</i> modENCODE. Science, 2010, 330, 1787-1797.	12.6	1,124
3	Math1: An Essential Gene for the Generation of Inner Ear Hair Cells. Science, 1999, 284, 1837-1841.	12.6	1,042
4	The BDGP Gene Disruption Project. Genetics, 2004, 167, 761-781.	2.9	774
5	Synaptic Mitochondria Are Critical for Mobilization of Reserve Pool Vesicles at Drosophila Neuromuscular Junctions. Neuron, 2005, 47, 365-378.	8.1	734
6	Math1 is essential for genesis of cerebellar granule neurons. Nature, 1997, 390, 169-172.	27.8	636
7	MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nature Methods, 2011, 8, 737-743.	19.0	620
8	Glial Lipid Droplets and ROS Induced by Mitochondrial Defects Promote Neurodegeneration. Cell, 2015, 160, 177-190.	28.9	617
9	Axon-Glia Interactions and the Domain Organization of Myelinated Axons Requires Neurexin IV/Caspr/Paranodin. Neuron, 2001, 30, 369-383.	8.1	510
10	A cis-regulatory map of the Drosophila genome. Nature, 2011, 471, 527-531.	27.8	477
11	Senseless, a Zn Finger Transcription Factor, Is Necessary and Sufficient for Sensory Organ Development in Drosophila. Cell, 2000, 102, 349-362.	28.9	473
12	Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca2+-activated neurotransmitter release. Cell, 1993, 74, 1125-1134.	28.9	451
13	Hrs Regulates Endosome Membrane Invagination and Tyrosine Kinase Receptor Signaling in Drosophila. Cell, 2002, 108, 261-269.	28.9	412
14	Synaptic Vesicle Size and Number Are Regulated by a Clathrin Adaptor Protein Required for Endocytosis. Neuron, 1998, 21, 1465-1475.	8.1	397
15	Genetic Manipulation of Genes and Cells in the Nervous System of the Fruit Fly. Neuron, 2011, 72, 202-230.	8.1	395
16	A Drosophila Neurexin Is Required for Septate Junction and Blood-Nerve Barrier Formation and Function. Cell, 1996, 87, 1059-1068.	28.9	390
17	Synaptojanin Is Recruited by Endophilin to Promote Synaptic Vesicle Uncoating. Neuron, 2003, 40, 733-748.	8.1	376
18	Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nature Methods, 2009, 6, 431-434.	19.0	375

#	Article	IF	Citations
19	Position Effects on Eukaryotic Gene Expression. Annual Review of Cell Biology, 1990, 6, 679-714.	26.1	373
20	<i>Drosophila</i> tools and assays for the study of human diseases. DMM Disease Models and Mechanisms, 2016, 9, 235-244.	2.4	367
21	100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nature Reviews Neuroscience, 2010, 11, 514-522.	10.2	358
22	Syntaxin and synaptobrevin function downstream of vesicle docking in drosophila. Neuron, 1995, 15, 663-673.	8.1	353
23	Huntingtin functions as a scaffold for selective macroautophagy. Nature Cell Biology, 2015, 17, 262-275.	10.3	336
24	The Glia-Neuron Lactate Shuttle and Elevated ROS Promote Lipid Synthesis in Neurons and Lipid Droplet Accumulation in Glia via APOE/D. Cell Metabolism, 2017, 26, 719-737.e6.	16.2	333
25	The <i>Drosophila</i> Gene Disruption Project: Progress Using Transposons With Distinctive Site Specificities. Genetics, 2011, 188, 731-743.	2.9	330
26	A Drosophila Genetic Resource of Mutants to Study Mechanisms Underlying Human Genetic Diseases. Cell, 2014, 159, 200-214.	28.9	322
27	A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila. ELife, 2015, 4, .	6.0	320
28	Endophilin Mutations Block Clathrin-Mediated Endocytosis but Not Neurotransmitter Release. Cell, 2002, 109, 101-112.	28.9	305
29	Shar-pei mediates cell proliferation arrest during imaginal disc growth inDrosophila. Development (Cambridge), 2002, 129, 5719-5730.	2.5	302
30	The v-ATPase V 0 Subunit a1 Is Required for a Late Step in Synaptic Vesicle Exocytosis in Drosophila. Cell, 2005, 121, 607-620.	28.9	297
31	Genetic and electrophysiological studies of drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission. Cell, 1995, 80, 311-320.	28.9	294
32	A Genome-wide Drosophila Screen for Heat Nociception Identifies $\hat{l}\pm2\hat{l}'3$ as an Evolutionarily Conserved Pain Gene. Cell, 2010, 143, 628-638.	28.9	283
33	Proprioceptor Pathway Development Is Dependent on MATH1. Neuron, 2001, 30, 411-422.	8.1	280
34	Chromatid Segregation at Anaphase Requires the barren Product, a Novel Chromosome-Associated Protein That Interacts with Topoisomerase II. Cell, 1996, 87, 1103-1114.	28.9	276
35	Discs Lost, a Novel Multi-PDZ Domain Protein, Establishes and Maintains Epithelial Polarity. Cell, 1999, 96, 833-845.	28.9	273
36	Rumi Is a CAP10 Domain Glycosyltransferase that Modifies Notch and Is Required for Notch Signaling. Cell, 2008, 132, 247-258.	28.9	272

#	Article	IF	Citations
37	Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation. Genes and Development, 2005, 19, 2412-2417.	5.9	267
38	Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusions are altered in Drosophila synaptotagmin mutants Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10888-10892.	7.1	266
39	Thirty-One Flavors of Drosophila Rab Proteins. Genetics, 2007, 176, 1307-1322.	2.9	264
40	Effect of Genetic Diagnosis on Patients with Previously Undiagnosed Disease. New England Journal of Medicine, 2018, 379, 2131-2139.	27.0	261
41	Safeguarding gene drive experiments in the laboratory. Science, 2015, 349, 927-929.	12.6	254
42	Comparative Flavivirus-Host Protein Interaction Mapping Reveals Mechanisms of Dengue and Zika Virus Pathogenesis. Cell, 2018, 175, 1931-1945.e18.	28.9	252
43	Drosophila Crumbs is a positional cue in photoreceptor adherens junctions and rhabdomeres. Nature, 2002, 416, 178-183.	27.8	251
44	A putative exchange factor for Rho1 GTPase is required for initiation of cytokinesis in Drosophila. Genes and Development, 1999, 13, 2301-2314.	5.9	250
45	Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nature Structural and Molecular Biology, 2005, 12, 879-885.	8.2	245
46	The Architecture of the Active Zone in the Presynaptic Nerve Terminal. Physiology, 2004, 19, 262-270.	3.1	244
47	The zinc finger transcription factorGfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development (Cambridge), 2003, 130, 221-232.	2.5	233
48	Dap160/Intersectin Acts as a Stabilizing Scaffold Required for Synaptic Development and Vesicle Endocytosis. Neuron, 2004, 43, 193-205.	8.1	225
49	A gene-specific T2A-GAL4 library for Drosophila. ELife, 2018, 7, .	6.0	203
50	Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Human Molecular Genetics, 2011, 20, 3642-3652.	2.9	200
51	The Amyotrophic Lateral Sclerosis 8 Protein VAPB Is Cleaved, Secreted, and Acts as a Ligand for Eph Receptors. Cell, 2008, 133, 963-977.	28.9	198
52	When cell biology meets development: endocytic regulation of signaling pathways. Genes and Development, 2002, 16, 1314-1336.	5.9	194
53	Synaptotagmin I, a Ca2+ sensor for neurotransmitter release. Trends in Neurosciences, 2003, 26, 413-422.	8.6	194
54	NAD synthase NMNAT acts as a chaperone to protect against neurodegeneration. Nature, 2008, 452, 887-891.	27.8	193

#	Article	IF	Citations
55	Syntaxin 1A Interacts with Multiple Exocytic Proteins to Regulate Neurotransmitter Release In Vivo. Neuron, 1999, 23, 593-605.	8.1	189
56	The AXH Domain of Ataxin-1 Mediates Neurodegeneration through Its Interaction with Gfi-1/Senseless Proteins. Cell, 2005, 122, 633-644.	28.9	189
57	Absence of synaptotagmin disrupts excitation-secretion coupling during synaptic transmission Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10727-10731.	7.1	186
58	Emerging technologies for gene manipulation in Drosophila melanogaster. Nature Reviews Genetics, 2005, 6, 167-178.	16.3	186
59	lg Superfamily Ligand and Receptor Pairs Expressed in Synaptic Partners in Drosophila. Cell, 2015, 163, 1756-1769.	28.9	184
60	Sec15, a Component of the Exocyst, Promotes Notch Signaling during the Asymmetric Division of Drosophila Sensory Organ Precursors. Developmental Cell, 2005, 9, 351-363.	7.0	182
61	Drosophila VAP-33A Directs Bouton Formation at Neuromuscular Junctions in a Dosage-Dependent Manner. Neuron, 2002, 35, 291-306.	8.1	181
62	MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome. American Journal of Human Genetics, 2017, 100, 843-853.	6.2	181
63	A role for Drosophila SMC4 in the resolution of sister chromatids in mitosis. Current Biology, 2001, 11, 295-307.	3.9	176
64	Rop, a drosophila homolog of yeast Sec1 and vertebrate n-Sect/Munc-18 proteins, is a negative regulator of neurotransmitter release in vivo. Neuron, 1994, 13, 1099-1108.	8.1	175
65	ROP, the Drosophila Sec1 homolog, interacts with syntaxin and regulates neurotransmitter release in a dosage-dependent manner. EMBO Journal, 1998, 17, 127-139.	7.8	173
66	Model Organisms Facilitate Rare Disease Diagnosis and Therapeutic Research. Genetics, 2017, 207, 9-27.	2.9	165
67	Drosophila NMNAT Maintains Neural Integrity Independent of Its NAD Synthesis Activity. PLoS Biology, 2006, 4, e416.	5.6	160
68	A Notch updated. Journal of Cell Biology, 2009, 184, 621-629.	5.2	159
69	atonal Regulates Neurite Arborization but Does Not Act as a Proneural Gene in the Drosophila Brain. Neuron, 2000, 25, 549-561.	8.1	156
70	Control of Synaptic Connectivity by a Network of Drosophila IgSF Cell Surface Proteins. Cell, 2015, 163, 1770-1782.	28.9	155
71	Evolutionary conservation of sequence and expression of the bHLH protein Atonal suggests a conserved role in neurogenesis. Human Molecular Genetics, 1996, 5, 1207-1216.	2.9	151
72	Fruit Flies in Biomedical Research. Genetics, 2015, 199, 639-653.	2.9	149

#	Article	IF	Citations
73	Mutations in the Mitochondrial Methionyl-tRNA Synthetase Cause a Neurodegenerative Phenotype in Flies and a Recessive Ataxia (ARSAL) in Humans. PLoS Biology, 2012, 10, e1001288.	5.6	147
74	Recurrent De Novo and Biallelic Variation of ATAD3A, Encoding a Mitochondrial Membrane Protein, Results in Distinct Neurological Syndromes. American Journal of Human Genetics, 2016, 99, 831-845.	6.2	146
75	Mutations affecting the pattern of the PNS in drosophila reveal novel aspects of neuronal development. Neuron, 1994, 13, 269-287.	8.1	143
76	Suppression of Neurodegeneration and Increased Neurotransmission Caused by Expanded Full-Length Huntingtin Accumulating in the Cytoplasm. Neuron, 2008, 57, 27-40.	8.1	143
77	Internalization is required for proper Wingless signaling in Drosophila melanogaster. Journal of Cell Biology, 2006, 173, 95-106.	5.2	142
78	The Undiagnosed Diseases Network: Accelerating Discovery about Health and Disease. American Journal of Human Genetics, 2017, 100, 185-192.	6.2	142
79	Synaptotagmin controls and modulates synaptic-vesicle fusion in a Ca2+-dependent manner. Trends in Neurosciences, 1995, 18, 177-183.	8.6	140
80	A Synaptic Vesicle-Associated Ca2+ Channel Promotes Endocytosis and Couples Exocytosis to Endocytosis. Cell, 2009, 138, 947-960.	28.9	138
81	A genetic toolkit for tagging intronic MiMIC containing genes. ELife, 2015, 4, .	6.0	134
82	Transgenesis upgrades for <i>Drosophila melanogaster </i> . Development (Cambridge), 2007, 134, 3571-3584.	2.5	133
83	Phospholipase PLA2G6, a Parkinsonism-Associated Gene, Affects Vps26 and Vps35, Retromer Function, and Ceramide Levels, Similar to α-Synuclein Gain. Cell Metabolism, 2018, 28, 605-618.e6.	16.2	133
84	Mutations in Drosophila sec15 Reveal a Function in Neuronal Targeting for a Subset of Exocyst Components. Neuron, 2005, 46, 219-232.	8.1	129
85	Aberrant lysosomal carbohydrate storage accompanies endocytic defects and neurodegeneration in <i>Drosophila benchwarmer</i>). Journal of Cell Biology, 2005, 170, 127-139.	5.2	128
86	Senseless acts as a binary switch during sensory organ precursor selection. Genes and Development, 2003, 17, 2966-2978.	5.9	126
87	The Nicotinic Acetylcholine Receptor Dα7 Is Required for an Escape Behavior inDrosophila. PLoS Biology, 2006, 4, e63.	5.6	124
88	Neurexin IV, caspr and paranodin—novel members of the neurexin family: encounters of axons and glia. Trends in Neurosciences, 1998, 21, 444-449.	8.6	122
89	senseless Repression of rough Is Required for R8 Photoreceptor Differentiation in the Developing Drosophila Eye. Neuron, 2001, 32, 403-414.	8.1	121
90	Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development. Journal of Cell Biology, 2007, 178, 309-322.	5 . 2	117

#	Article	IF	CITATIONS
91	A Mitocentric View of Parkinson's Disease. Annual Review of Neuroscience, 2014, 37, 137-159.	10.7	115
92	Doing the MATH: is the mouse a good model for fly development?. Genes and Development, 2000, 14, 1852-1865.	5.9	114
93	Quantitative Analysis of Bristle Number in Drosophila Mutants Identifies Genes Involved in Neural Development. Current Biology, 2003, 13, 1388-1396.	3.9	113
94	Endocytosis and Intracellular Trafficking of Notch and Its Ligands. Current Topics in Developmental Biology, 2010, 92, 165-200.	2.2	113
95	Mitochondrial fusion but not fission regulates larval growth and synaptic development through steroid hormone production. ELife, 2014, 3, .	6.0	109
96	The Psychiatric Cell Map Initiative: A Convergent Systems Biological Approach to Illuminating Key Molecular Pathways in Neuropsychiatric Disorders. Cell, 2018, 174, 505-520.	28.9	108
97	A Genome-Wide Search for Synaptic Vesicle Cycle Proteins in Drosophila. Neuron, 2000, 26, 45-50.	8.1	105
98	Mapping and identification of essential gene functions on the X chromosome of Drosophila. EMBO Reports, 2002, 3, 34-38.	4.5	105
99	NMNAT2:HSP90 Complex Mediates Proteostasis in Proteinopathies. PLoS Biology, 2016, 14, e1002472.	5.6	105
100	An efficient CRISPR-based strategy to insert small and large fragments of DNA using short homology arms. ELife, $2019, 8, .$	6.0	105
101	Drosophila atonal Fully Rescues the Phenotype of Math1 Null Mice. Current Biology, 2002, 12, 1611-1616.	3.9	104
102	Tweek, an Evolutionarily Conserved Protein, Is Required for Synaptic Vesicle Recycling. Neuron, 2009, 63, 203-215.	8.1	104
103	Spectraplakins Promote Microtubule-Mediated Axonal Growth by Functioning As Structural Microtubule-Associated Proteins and EB1-Dependent +TIPs (Tip Interacting Proteins). Journal of Neuroscience, 2012, 32, 9143-9158.	3.6	104
104	Ubiquilins regulate autophagic flux through mTOR signalling and lysosomal acidification. Nature Cell Biology, 2019, 21, 384-396.	10.3	102
105	Tilting the Balance between Facilitatory and Inhibitory Functions of Mammalian and Drosophila Complexins Orchestrates Synaptic Vesicle Exocytosis. Neuron, 2009, 64, 367-380.	8.1	101
106	A Novel Neuronal Pathway for Visually Guided Escape in <i>Drosophila melanogaster</i> . Journal of Neurophysiology, 2009, 102, 875-885.	1.8	100
107	FM 1-43 Labeling of Synaptic Vesicle Pools at the Drosophila Neuromuscular Junction. Methods in Molecular Biology, 2008, 440, 349-369.	0.9	100
108	miR-9a Minimizes the Phenotypic Impact of Genomic Diversity by Buffering a Transcription Factor. Cell, 2013, 155, 1556-1567.	28.9	99

#	Article	IF	Citations
109	The Arp2/3 complex and WASp are required for apical trafficking of Delta into microvilli during cell fate specification of sensory organ precursors. Nature Cell Biology, 2009, 11, 815-824.	10.3	98
110	Huntingtin-interacting protein 14, a palmitoyl transferase required for exocytosis and targeting of CSP to synaptic vesicles. Journal of Cell Biology, 2007, 179, 1481-1496.	5.2	97
111	A Molecularly Defined Duplication Set for the X Chromosome of <i>Drosophila melanogaster</i> Genetics, 2010, 186, 1111-1125.	2.9	97
112	Activity-Independent Prespecification of Synaptic Partners in the Visual Map of Drosophila. Current Biology, 2006, 16, 1835-1843.	3.9	96
113	Probing Mechanisms That Underlie Human Neurodegenerative Diseases inDrosophila. Annual Review of Genetics, 2012, 46, 371-396.	7.6	96
114	A Syndromic Neurodevelopmental Disorder Caused by De Novo Variants in EBF3. American Journal of Human Genetics, 2017, 100, 128-137.	6.2	96
115	Loss of Nardilysin, a Mitochondrial Co-chaperone for α-Ketoglutarate Dehydrogenase, Promotes mTORC1 Activation and Neurodegeneration. Neuron, 2017, 93, 115-131.	8.1	95
116	$\langle i \rangle$ Drosophila P $\langle i \rangle$ elements preferentially transpose to replication origins. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15948-15953.	7.1	93
117	Crag Is a GEF for Rab11 Required for Rhodopsin Trafficking and Maintenance of Adult Photoreceptor Cells. PLoS Biology, 2012, 10, e1001438.	5.6	93
118	Stringent Analysis of Gene Function and Protein–Protein Interactions Using Fluorescently Tagged Genes. Genetics, 2012, 190, 931-940.	2.9	92
119	A Mutation in EGF Repeat-8 of Notch Discriminates Between Serrate/Jagged and Delta Family Ligands. Science, 2012, 338, 1229-1232.	12.6	92
120	Pri sORF peptides induce selective proteasome-mediated protein processing. Science, 2015, 349, 1356-1358.	12.6	90
121	Ten Years of Enhancer Detection: Lessons from the Fly. Plant Cell, 1999, 11, 2271-2281.	6.6	89
122	Mapping Drosophila mutations with molecularly defined P element insertions. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10860-10865.	7.1	89
123	Cell Adhesion, the Backbone of the Synapse: "Vertebrate" and "Invertebrate" Perspectives. Cold Spring Harbor Perspectives in Biology, 2009, 1, a003079-a003079.	5.5	89
124	Bonus, a Drosophila Homolog of TIF1 Proteins, Interacts with Nuclear Receptors and Can Inhibit βFTZ-F1-Dependent Transcription. Molecular Cell, 2001, 7, 753-765.	9.7	88
125	<i>P</i> -Element Insertion Alleles of Essential Genes on the Third Chromosome of <idrosophila i="" melanogaster:<=""> <i>Nutations Affecting Embryonic PNS Development. Genetics, 1997, 147, 1723-1741.</i></idrosophila>	2.9	87
126	Endophilin Promotes a Late Step in Endocytosis at Glial Invaginations in Drosophila Photoreceptor Terminals. Journal of Neuroscience, 2003, 23, 10732-10744.	3.6	86

#	Article	IF	Citations
127	NMNATs, evolutionarily conserved neuronal maintenance factors. Trends in Neurosciences, 2013, 36, 632-640.	8.6	85
128	A Voltage-Gated Calcium Channel Regulates Lysosomal Fusion with Endosomes and Autophagosomes and Is Required for Neuronal Homeostasis. PLoS Biology, 2015, 13, e1002103.	5.6	85
129	Low doses of the neonicotinoid insecticide imidacloprid induce ROS triggering neurological and metabolic impairments in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25840-25850.	7.1	85
130	The ins and outs of Wingless signaling. Trends in Cell Biology, 2004, 14, 45-53.	7.9	82
131	The BMP signaling pathway at the Drosophila neuromuscular junction and its links to neurodegenerative diseases. Current Opinion in Neurobiology, 2011, 21, 182-188.	4.2	82
132	Sphingolipids in the Pathogenesis of Parkinson's Disease and Parkinsonism. Trends in Endocrinology and Metabolism, 2019, 30, 106-117.	7.1	82
133	Clinically severe CACNA1A alleles affect synaptic function and neurodegeneration differentially. PLoS Genetics, 2017, 13, e1006905.	3.5	80
134	Morgan's Legacy: Fruit Flies and the Functional Annotation of Conserved Genes. Cell, 2015, 163, 12-14.	28.9	79
135	Lysosomal Degradation Is Required for Sustained Phagocytosis of Bacteria by Macrophages. Cell Host and Microbe, 2017, 21, 719-730.e6.	11.0	79
136	Introduction to Notch Signaling. Methods in Molecular Biology, 2014, 1187, 1-14.	0.9	78
137	Untying the Gordian Knot of Cytokinesis. Journal of Cell Biology, 2000, 148, 843-848.	5.2	77
138	Uncoupling neuronal death and dysfunction in Drosophila models of neurodegenerative disease. Acta Neuropathologica Communications, 2016, 4, 62.	5.2	77
139	The Retromer Complex Is Required for Rhodopsin Recycling and Its Loss Leads to Photoreceptor Degeneration. PLoS Biology, 2014, 12, e1001847.	5.6	75
140	Loss of Frataxin induces iron toxicity, sphingolipid synthesis, and Pdk1/Mef2 activation, leading to neurodegeneration. ELife, 2016, 5 , .	6.0	74
141	Two Drosophila learning mutants, dunce and rutabaga, provide evidence of a maternal role for cAMP on embryogenesis. Developmental Biology, 1987, 121, 432-444.	2.0	73
142	The retromer complex in development and disease. Development (Cambridge), 2015, 142, 2392-2396.	2.5	73
143	The fruit fly at the interface of diagnosis and pathogenic mechanisms of rare and common human diseases. Human Molecular Genetics, 2019, 28, R207-R214.	2.9	72
144	Growth Factor Independence-1 Is Expressed in Primary Human Neuroendocrine Lung Carcinomas and Mediates the Differentiation of Murine Pulmonary Neuroendocrine Cells. Cancer Research, 2004, 64, 6874-6882.	0.9	71

#	Article	IF	CITATIONS
145	Mutations in ANKLE2, a ZIKA Virus Target, Disrupt an Asymmetric Cell Division Pathway in Drosophila Neuroblasts to Cause Microcephaly. Developmental Cell, 2019, 51, 713-729.e6.	7.0	71
146	Loss- or Gain-of-Function Mutations in ACOX1 Cause Axonal Loss via Different Mechanisms. Neuron, 2020, 106, 589-606.e6.	8.1	71
147	skittles, a Drosophila Phosphatidylinositol 4-Phosphate 5-Kinase, Is Required for Cell Viability, Germline Development and Bristle Morphology, But Not for Neurotransmitter Release. Genetics, 1998, 150, 1527-1537.	2.9	70
148	IRF2BPL Is Associated with Neurological Phenotypes. American Journal of Human Genetics, 2018, 103, 245-260.	6.2	69
149	Primordium specific requirement of the homeotic gene fork head in the developing gut of the Drosophila embryo. Roux's Archives of Developmental Biology, 1989, 198, 201-210.	1.2	68
150	Secreted VAPB/ALS8 Major Sperm Protein Domains Modulate Mitochondrial Localization and Morphology via Growth Cone Guidance Receptors. Developmental Cell, 2012, 22, 348-362.	7.0	68
151	Rhodopsin homeostasis and retinal degeneration: lessons from the fly. Trends in Neurosciences, 2013, 36, 652-660.	8.6	68
152	A TRPV Channel in Drosophila Motor Neurons Regulates Presynaptic Resting Ca2+ Levels, Synapse Growth, and Synaptic Transmission. Neuron, 2014, 84, 764-777.	8.1	68
153	De Novo Truncating Variants in ASXL2 Are Associated with a Unique and Recognizable Clinical Phenotype. American Journal of Human Genetics, 2016, 99, 991-999.	6.2	68
154	Mutations Affecting the Development of the Peripheral Nervous System in Drosophila: A Molecular Screen for Novel Proteins. Genetics, 2000, 156, 1691-1715.	2.9	68
155	Large-scale identification of chemically induced mutations in <i>Drosophila melanogaster</i> . Genome Research, 2014, 24, 1707-1718.	5.5	67
156	The <i>Drosophila</i> deoxyhypusine hydroxylase homologue <i>nero</i> and its target eIF5A are required for cell growth and the regulation of autophagy. Journal of Cell Biology, 2009, 185, 1181-1194.	5. 2	66
157	Genome-Wide Manipulations of Drosophila melanogaster with Transposons, Flp Recombinase, and \hat{l} C31 Integrase. Methods in Molecular Biology, 2012, 859, 203-228.	0.9	65
158	Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster. Methods, 2014, 68, 15-28.	3.8	65
159	Neuron-Subtype-Specific Expression, Interaction Affinities, and Specificity Determinants of DIP/Dpr Cell Recognition Proteins. Neuron, 2018, 100, 1385-1400.e6.	8.1	65
160	Ero1L, a thiol oxidase, is required for Notch signaling through cysteine bridge formation of the Lin12-Notch repeats in <i>Drosophila melanogaster </i>). Journal of Cell Biology, 2008, 182, 1113-1125.	5 . 2	64
161	Interactions between the Ig-Superfamily Proteins DIP-α and Dpr6/10 Regulate Assembly of Neural Circuits. Neuron, 2018, 100, 1369-1384.e6.	8.1	64
162	Senseless and Daughterless confer neuronal identity to epithelial cells in the Drosophila wing margin. Development (Cambridge), 2006, 133, 1683-1692.	2.5	62

#	Article	IF	CITATIONS
163	Senseless physically interacts with proneural proteins and functions as a transcriptional co-activator. Development (Cambridge), 2006, 133, 1979-1989.	2.5	62
164	Missense variants in the middle domain of <i>DNM1L</i> in cases of infantile encephalopathy alter peroxisomes and mitochondria when assayed in <i>Drosophila</i> . Human Molecular Genetics, 2016, 25, 1846-1856.	2.9	62
165	<i>straightjacket</i> is required for the synaptic stabilization of <i>cacophony</i> , a voltage-gated calcium channel $\hat{l}\pm 1$ subunit. Journal of Cell Biology, 2008, 181, 157-170.	5.2	61
166	Genetic strategies to tackle neurological diseases in fruit flies. Current Opinion in Neurobiology, 2018, 50, 24-32.	4.2	61
167	Loss of Frataxin activates the iron/sphingolipid/PDK1/Mef2 pathway in mammals. ELife, 2016, 5, .	6.0	61
168	<i>Drosophila</i> Neuroligin 2 is Required Presynaptically and Postsynaptically for Proper Synaptic Differentiation and Synaptic Transmission. Journal of Neuroscience, 2012, 32, 16018-16030.	3.6	60
169	A comprehensive iterative approach is highly effective in diagnosing individuals who are exome negative. Genetics in Medicine, 2019, 21, 161-172.	2.4	60
170	The amyotrophic lateral sclerosis 8 protein, VAP, is required for ER protein quality control. Human Molecular Genetics, 2014, 23, 1975-1989.	2.9	59
171	Biallelic Mutations in ATP5F1D, which Encodes a Subunit of ATP Synthase, Cause a Metabolic Disorder. American Journal of Human Genetics, 2018, 102, 494-504.	6.2	59
172	An expanded toolkit for gene tagging based on MiMIC and scarless CRISPR tagging in Drosophila. ELife, 2018, 7 , .	6.0	59
173	Neuronal ROS-induced glial lipid droplet formation is altered by loss of Alzheimer's disease–associated genes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	59
174	The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit. Journal of Cell Biology, 2013, 200, 807-820.	5.2	56
175	Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure. Nature Communications, 2015, 6, 8245.	12.8	55
176	Functional variants in TBX2 are associated with a syndromic cardiovascular and skeletal developmental disorder. Human Molecular Genetics, 2018, 27, 2454-2465.	2.9	54
177	Sexual Hyperactivity and Reduced Longevity of <i>dunce</i> Females of <i>Drosophila melanogaster</i> . Genetics, 1987, 115, 153-160.	2.9	54
178	Model organisms contribute to diagnosis and discovery in the undiagnosed diseases network: current state and a future vision. Orphanet Journal of Rare Diseases, 2021, 16, 206.	2.7	53
179	Drosophila <i>syntaxin</i> Is Required for Cell Viability and May Function in Membrane Formation and Stabilization. Genetics, 1996, 144, 1713-1724.	2.9	53
180	<i>Drosophila</i> Voltage-Gated Sodium Channels Are Only Expressed in Active Neurons and Are Localized to Distal Axonal Initial Segment-like Domains. Journal of Neuroscience, 2020, 40, 7999-8024.	3.6	50

#	Article	IF	CITATIONS
181	Impaired Mitochondrial Energy Production Causes Light-Induced Photoreceptor Degeneration Independent of Oxidative Stress. PLoS Biology, 2015, 13, e1002197.	5.6	48
182	Drosophila Ten-m and Filamin Affect Motor Neuron Growth Cone Guidance. PLoS ONE, 2011, 6, e22956.	2.5	48
183	TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS. ELife, 2020, 9, .	6.0	48
184	Targeted Mutations in the Syntaxin H3 Domain Specifically Disrupt SNARE Complex Function in Synaptic Transmission. Journal of Neuroscience, 2001, 21, 9142-9150.	3.6	47
185	Enhancement of presynaptic calcium current by cysteine string protein. Journal of Physiology, 2002, 538, 383-389.	2.9	47
186	Gfi/Pag-3/Senseless Zinc Finger Proteins: a Unifying Theme?. Molecular and Cellular Biology, 2004, 24, 8803-8812.	2.3	47
187	WAC Regulates mTOR Activity by Acting as an Adaptor for the TTT and Pontin/Reptin Complexes. Developmental Cell, 2016, 36, 139-151.	7.0	47
188	Rare Functional Variant in TM2D3 is Associated with Late-Onset Alzheimer's Disease. PLoS Genetics, 2016, 12, e1006327.	3.5	47
189	Ari-1 Regulates Myonuclear Organization Together with Parkin and Is Associated with Aortic Aneurysms. Developmental Cell, 2018, 45, 226-244.e8.	7.0	46
190	Drosophila Tempura, a Novel Protein Prenyltransferase $\hat{l}\pm$ Subunit, Regulates Notch Signaling Via Rab1 and Rab11. PLoS Biology, 2014, 12, e1001777.	5.6	45
191	VAMP associated proteins are required for autophagic and lysosomal degradation by promoting a PtdIns4P-mediated endosomal pathway. Autophagy, 2019, 15, 1214-1233.	9.1	45
192	Gene Tagging Strategies To Assess Protein Expression, Localization, and Function in. Genetics, 2017, 207, 389-412.	2.9	45
193	De Novo Variants in WDR37 Are Associated with Epilepsy, Colobomas, Dysmorphism, Developmental Delay, Intellectual Disability, and Cerebellar Hypoplasia. American Journal of Human Genetics, 2019, 105, 413-424.	6.2	43
194	Disruptive mutations in TANC2 define a neurodevelopmental syndrome associated with psychiatric disorders. Nature Communications, 2019, 10, 4679.	12.8	43
195	Looking beyond the exome: a phenotype-first approach to molecular diagnostic resolution in rare and undiagnosed diseases. Genetics in Medicine, 2018, 20, 464-469.	2.4	42
196	The Fruit Fly: A Model Organism to Study the Genetics of Alcohol Abuse and Addiction?. Cell, 1998, 93, 909-912.	28.9	39
197	Using <i>Drosophila</i> to drive the diagnosis and understand the mechanisms of rare human diseases. Development (Cambridge), 2020, 147, .	2.5	37
198	De novo EIF2AK1 and EIF2AK2 Variants Are Associated with Developmental Delay, Leukoencephalopathy, and Neurologic Decompensation. American Journal of Human Genetics, 2020, 106, 570-583.	6.2	37

#	Article	IF	CITATIONS
199	Retromer subunit, VPS29, regulates synaptic transmission and is required for endolysosomal function in the aging brain. ELife, 2020, 9, .	6.0	37
200	<i>dEHBP1</i> controls exocytosis and recycling of Delta during asymmetric divisions. Journal of Cell Biology, 2012, 196, 65-83.	5.2	35
201	VAPB/ALS8 MSP Ligands Regulate Striated Muscle Energy Metabolism Critical for Adult Survival in Caenorhabditis elegans. PLoS Genetics, 2013, 9, e1003738.	3. 5	35
202	A Recurrent De Novo Variant in NACC1 Causes a Syndrome Characterized by Infantile Epilepsy, Cataracts, and Profound Developmental Delay. American Journal of Human Genetics, 2017, 100, 343-351.	6.2	35
203	Charlatan, a Zn-finger transcription factor, establishes a novel level of regulation of the proneural achaete/scute genes of Drosophila. Development (Cambridge), 2005, 132, 1211-1222.	2.5	34
204	Loss of Oxidation Resistance 1, OXR1, Is Associated with an Autosomal-Recessive Neurological Disease with Cerebellar Atrophy and Lysosomal Dysfunction. American Journal of Human Genetics, 2019, 105, 1237-1253.	6.2	34
205	V-ATPase V0 Sector Subunit a1 in Neurons Is a Target of Calmodulin. Journal of Biological Chemistry, 2008, 283, 294-300.	3.4	33
206	Numb. Developmental Cell, 2002, 3, 155-156.	7. O	32
207	BICRA, a SWI/SNF Complex Member, Is Associated with BAF-Disorder Related Phenotypes in Humans and Model Organisms. American Journal of Human Genetics, 2020, 107, 1096-1112.	6.2	32
208	Genetic dissection of synaptic transmission in Drosophila. Current Opinion in Neurobiology, 1997, 7, 624-630.	4.2	31
209	The Krebs Cycle Enzyme Isocitrate Dehydrogenase 3A Couples Mitochondrial Metabolism to Synaptic Transmission. Cell Reports, 2017, 21, 3794-3806.	6.4	31
210	Peroxisomal biogenesis is genetically and biochemically linked to carbohydrate metabolism in Drosophila and mouse. PLoS Genetics, 2017, 13, e1006825.	3 . 5	31
211	Dissecting the complexity of the nervous system by enhancer detection. BioEssays, 1990, 12, 199-204.	2.5	30
212	Syncrip/hnRNP Q influences synaptic transmission and regulates BMP signaling at the <i>Drosophila</i> neuromuscular synapse. Biology Open, 2014, 3, 839-849.	1,2	30
213	<i>gutfeeling</i> , a Drosophila Gene Encoding an Antizyme-Like Protein, Is Required for Late Differentiation of Neurons and Muscles. Genetics, 1996, 144, 183-196.	2.9	30
214	Drosophila <i>Lyra</i> Mutations Are Gain-of-Function Mutations of <i>senseless</i> Genetics, 2001, 157, 307-315.	2.9	30
215	Rich Regulates Target Specificity of Photoreceptor Cells and N-Cadherin Trafficking in the Drosophila Visual System via Rab6. Neuron, 2011, 71, 447-459.	8.1	29
216	Bi-allelic Loss-of-Function Variants in DNMBP Cause Infantile Cataracts. American Journal of Human Genetics, 2018, 103, 568-578.	6.2	29

#	Article	IF	CITATIONS
217	A kinase-dependent feedforward loop affects CREBB stability and long term memory formation. ELife, 2018, 7, .	6.0	29
218	De novo mutations in TOMM70, a receptor of the mitochondrial import translocase, cause neurological impairment. Human Molecular Genetics, 2020, 29, 1568-1579.	2.9	29
219	Deciphering the Function of Neurexins at Cellular Junctions. Journal of Cell Biology, 1997, 137, 793-796.	5.2	28
220	Developmental Expression of 4-Repeat-Tau Induces Neuronal Aneuploidy in Drosophila Tauopathy Models. Scientific Reports, 2017, 7, 40764.	3.3	28
221	Tailoring Uniform Coats for Synaptic Vesicles during Endocytosis. Neuron, 1999, 23, 419-422.	8.1	27
222	cindr, the Drosophila Homolog of the CD2AP Alzheimer's Disease Risk Gene, Is Required for Synaptic Transmission and Proteostasis. Cell Reports, 2019, 28, 1799-1813.e5.	6.4	27
223	Protein Phosphatase $1\tilde{\text{A}}\ddot{\text{Y}}$ Limits Ring Canal Constriction during Drosophila Germline Cyst Formation. PLoS ONE, 2013, 8, e70502.	2.5	27
224	Tissue distribution of PEBBLE RNA and Pebble protein during Drosophila embryonic development. Mechanisms of Development, 2000, 90, 269-273.	1.7	26
225	Amyotrophic Lateral Sclerosis Pathogenesis Converges on Defects in Protein Homeostasis Associated with TDP-43 Mislocalization and Proteasome-Mediated Degradation Overload. Current Topics in Developmental Biology, 2017, 121, 111-171.	2.2	26
226	The dynamin-binding domains of Dap160/Intersectin affect bulk membrane retrieval in synapses. Journal of Cell Science, 2013, 126, 1021-31.	2.0	25
227	Shared mechanisms between Drosophila peripheral nervous system development and human neurodegenerative diseases. Current Opinion in Neurobiology, 2014, 27, 158-164.	4.2	25
228	An expanded toolkit for Drosophila gene tagging using synthesized homology donor constructs for CRISPR-mediated homologous recombination. ELife, 0, 11 , .	6.0	25
229	Importin 13 Regulates Neurotransmitter Release at the <i>Drosophila</i> Neuromuscular Junction. Journal of Neuroscience, 2009, 29, 5628-5639.	3.6	24
230	Using < i > Drosophila < /i > to study mechanisms of hereditary hearing loss. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	24
231	De Novo Variants in CDK19 Are Associated with a Syndrome Involving Intellectual Disability and Epileptic Encephalopathy. American Journal of Human Genetics, 2020, 106, 717-725.	6.2	23
232	TNPO2 variants associate with human developmental delays, neurologic deficits, and dysmorphic features and alter TNPO2 activity in Drosophila. American Journal of Human Genetics, 2021, 108, 1669-1691.	6.2	23
233	The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals. ELife, 2016, 5, .	6.0	23
234	A cell cycle-independent, conditional gene inactivation strategy for differentially tagging wild-type and mutant cells. ELife, 2017, 6, .	6.0	23

#	Article	IF	CITATIONS
235	Bonus, a Drosophila TIF1 Homolog, Is a Chromatin-Associated Protein That Acts as a Modifier of Position-Effect Variegation. Genetics, 2005, 169, 783-794.	2.9	22
236	Bi-allelic Variants in IQSEC1 Cause Intellectual Disability, Developmental Delay, and Short Stature. American Journal of Human Genetics, 2019, 105, 907-920.	6.2	22
237	The Daam2–VHL–Nedd4 axis governs developmental and regenerative oligodendrocyte differentiation. Genes and Development, 2020, 34, 1177-1189.	5.9	22
238	Visual impairment and progressive phthisis bulbi caused by recessive pathogenic variant in MARK3. Human Molecular Genetics, 2018, 27, 2703-2711.	2.9	21
239	Neuronal activity induces glucosylceramide that is secreted via exosomes for lysosomal degradation in glia. Science Advances, 2022, 8, .	10.3	21
240	Invertebrate versus vertebrate neurogenesis: Variations on the same theme?. Genesis, 1996, 18, 1-10.	2.1	20
241	Navigating MARRVEL, a Web-Based Tool that Integrates Human Genomics and Model Organism Genetics Information. Journal of Visualized Experiments, 2019, , .	0.3	20
242	Novel role of dynaminâ€relatedâ€protein 1 in dynamics of ERâ€lipid droplets in adipose tissue. FASEB Journal, 2020, 34, 8265-8282.	0.5	20
243	Presynaptic proteins involved in exocytosis in Drosophila melanogaster: A genetic analysis. Invertebrate Neuroscience, 1995 , 1 , $3-13$.	1.8	19
244	Heterozygous variants in <i>MYBPC1</i> are associated with an expanded neuromuscular phenotype beyond arthrogryposis. Human Mutation, 2019, 40, 1115-1126.	2.5	19
245	Loss-of-function variants in TIAM1 are associated with developmental delay, intellectual disability, and seizures. American Journal of Human Genetics, 2022, 109, 571-586.	6.2	19
246	The ROP-Syntaxin interaction inhibits neurotransmitter release. European Journal of Cell Biology, 2001, 80, 196-199.	3.6	17
247	Rare deleterious <i>de novo</i> missense variants in <i>Rnf2/Ring2</i> are associated with a neurodevelopmental disorder with unique clinical features. Human Molecular Genetics, 2021, 30, 1283-1292.	2.9	17
248	Ubr3, a Novel Modulator of Hh Signaling Affects the Degradation of Costal-2 and Kif7 through Poly-ubiquitination. PLoS Genetics, 2016, 12, e1006054.	3.5	17
249	Building dialogues between clinical and biomedical research through cross-species collaborations. Seminars in Cell and Developmental Biology, 2017, 70, 49-57.	5.0	16
250	Low doses of the organic insecticide spinosad trigger lysosomal defects, elevated ROS, lipid dysregulation, and neurodegeneration in flies. ELife, 2022, 11, .	6.0	16
251	'Fly-ing' from rare to common neurodegenerative disease mechanisms. Trends in Genetics, 2022, 38, 972-984.	6.7	16
252	Meaningless minis? Mechanisms of neurotransmitter-receptor clustering. Trends in Neurosciences, 2002, 25, 383-385.	8.6	15

#	Article	IF	Citations
253	Synaptic vesicle retrieval: still time for a kiss. Nature Cell Biology, 2002, 4, E245-E248.	10.3	15
254	Variants in CAPZA2, a member of an F-actin capping complex, cause intellectual disability and developmental delay. Human Molecular Genetics, 2020, 29, 1537-1546.	2.9	15
255	An Assay to Detect <i>In Vivo</i> Y Chromosome Loss in <i>Drosophila</i> Wing Disc Cells. G3: Genes, Genomes, Genetics, 2012, 2, 1095-1102.	1.8	14
256	Pleiotropic neuropathological and biochemical alterations associated with Myo5a mutation in a rat Model. Brain Research, 2018, 1679, 155-170.	2.2	14
257	Sequoia regulates cell fate decisions in the external sensory organs of adult Drosophila. EMBO Reports, 2009, 10, 636-641.	4.5	13
258	Heterozygous loss-of-function variants significantly expand the phenotypes associated with loss of GDF11. Genetics in Medicine, 2021, 23, 1889-1900.	2.4	13
259	Recent insights into the role of glia and oxidative stress in Alzheimer's disease gained from Drosophila. Current Opinion in Neurobiology, 2022, 72, 32-38.	4.2	13
260	Flybase: a virtual Drosophila cornucopia. Trends in Genetics, 1995, 11, 456-457.	6.7	12
261	Elevated COUP-TFII expression in dopaminergic neurons accelerates the progression of Parkinson's disease through mitochondrial dysfunction. PLoS Genetics, 2020, 16, e1008868.	3.5	12
262	Loss of IRF2BPL impairs neuronal maintenance through excess Wnt signaling. Science Advances, 2022, 8, eabl5613.	10.3	12
263	Phosphatidylserine synthase plays an essential role in glia and affects development, as well as the maintenance of neuronal function. IScience, 2021, 24, 102899.	4.1	11
264	Flying in the face of total disruption. Nature Genetics, 2004, 36, 211-212.	21.4	10
265	<i>dEHBP1</i> regulates Scabrous secretion during Notch mediated lateral inhibition. Journal of Cell Science, 2013, 126, 3686-96.	2.0	10
266	FlyVar: a database for genetic variation in Drosophila melanogaster. Database: the Journal of Biological Databases and Curation, 2015, 2015, .	3.0	10
267	Loss of proteins associated with amyotrophic lateral sclerosis affects lysosomal acidification via different routes. Autophagy, 2019, 15, 1467-1469.	9.1	10
268	Systematic expression profiling of Dpr and DIP genes reveals cell surface codes in <i>Drosophila</i> larval motor and sensory neurons. Development (Cambridge), 2022, 149, .	2.5	10
269	Localization of BRRN1, the Human Homologue ofDrosophila barr,to 2q11.2. Genomics, 1997, 46, 311-313.	2.9	9
270	Dueling Ca2+ Sensors in Neurotransmitter Release. Cell, 2011, 147, 491-493.	28.9	9

#	Article	IF	CITATIONS
271	Model organism databases are in jeopardy. Development (Cambridge), 2021, 148, .	2.5	9
272	Regulation of Drosophila oviduct muscle contractility by octopamine. IScience, 2022, 25, 104697.	4.1	9
273	Hauling t-SNAREs on the microtubule highway. Nature Cell Biology, 2004, 6, 918-919.	10.3	8
274	The expanding neurological phenotype of DNM1L-related disorders. Brain, 2018, 141, e28-e28.	7.6	7
275	Daam2 Regulates Myelin Structure and the Oligodendrocyte Actin Cytoskeleton through Rac1 and Gelsolin. Journal of Neuroscience, 2022, 42, 1679-1691.	3.6	7
276	Mutations in neuromusculin, a gene encoding a cell adhesion molecule, cause nervous system defects. Roux's Archives of Developmental Biology, 1995, 204, 259-270.	1.2	6
277	Use of the CRISPR as9 System in Drosophila Cultured Cells to Introduce Fluorescent Tags into Endogenous Genes. Current Protocols in Molecular Biology, 2020, 130, e112.	2.9	6
278	NEUROSCIENCE: The Meaning of a Mini. Science, 2001, 293, 443-444.	12.6	6
279	The microRNA processor <i>DROSHA</i> is a candidate gene for a severe progressive neurological disorder. Human Molecular Genetics, 2022, 31, 2934-2950.	2.9	6
280	pRIMing synaptic vesicles for fusion. Nature Neuroscience, 2001, 4, 965-966.	14.8	5
281	Rab3 GTPase Lands Bruchpilot. Neuron, 2009, 64, 595-597.	8.1	5
282	<i>De novo FZR1</i> loss-of-function variants cause developmental and epileptic encephalopathies. Brain, 2022, 145, 1684-1697.	7.6	5
283	Loss of Neuron Navigator 2 Impairs Brain and Cerebellar Development. Cerebellum, 2022, , 1.	2.5	5
284	ModelMatcher: A scientistâ€eentric online platform to facilitate collaborations between stakeholders of rare and undiagnosed disease research. Human Mutation, 2022, , .	2.5	5
285	Embryonic cAMP and developmental potential in Drosophila melanogaster. Roux's Archives of Developmental Biology, 1992, 201, 257-264.	1.2	4
286	Survival of the Fittest Tools. Genetics, 2014, 198, 427-428.	2.9	3
287	Novel dominant and recessive variants in human $\langle i \rangle$ ROBO1 $\langle i \rangle$ cause distinct neurodevelopmental defects through different mechanisms. Human Molecular Genetics, 2022, 31, 2751-2765.	2.9	3
288	Discs Lost, a Novel Multi-PDZ Domain Protein, Establishes and Maintains Epithelial Polarity. Cell, 2003, 115, 765-766.	28.9	2

#	Article	IF	Citations
289	In Vivo Animal Modeling. , 2017, , 211-234.		2
290	Lord of the fruit flies: an interview with Hugo Bellen. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	2
291	Q & A. Current Biology, 2004, 14, R218.	3.9	1
292	Fighting anthrax with flies. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3013-3014.	7.1	1
293	Invertebrate Glia., 2004, , 199-222.		1
294	<i>Cindr</i> , the <i>Drosophila</i> Homolog of the <i>CD2AP</i> Alzheimer's Disease Susceptibility Gene, is Required for Synaptic Transmission and Proteostasis. SSRN Electronic Journal, 0, , .	0.4	1
295	Ten Years of Enhancer Detection: Lessons from the Fly. Plant Cell, 1999, 11, 2271.	6.6	0
296	La CaSSA da Drosophila: A Versatile Expansion of the Tool Box. Neuron, 2019, 104, 177-179.	8.1	0
297	The <i>Drosophila</i> deoxyhypusine hydroxylase homologue <i>nero</i> and its target eIF5A are required for cell growth and the regulation of autophagy. Journal of Experimental Medicine, 2009, 206, i14-i14.	8.5	O