Cristina Granziera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4749925/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CSF chitinase 3-like 1 is associated with iron rims in patients with a first demyelinating event. Multiple Sclerosis Journal, 2022, 28, 71-81.	3.0	10
2	Regional Cerebellar Volume Loss Predicts Future Disability in Multiple Sclerosis Patients. Cerebellum, 2022, 21, 632-646.	2.5	8
3	Microstructure-Weighted Connectomics in Multiple Sclerosis. Brain Connectivity, 2022, 12, 6-17.	1.7	4
4	Incorporating outlier information into diffusion-weighted MRI modeling for robust microstructural imaging and structural brain connectivity analyses. NeuroImage, 2022, 247, 118802.	4.2	3
5	Serum NfL levels in the first five years predict 10-year thalamic fraction in patients with MS. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2022, 8, 205521732110693.	1.0	3
6	Smouldering multiple sclerosis: the â€~real MS'. Therapeutic Advances in Neurological Disorders, 2022, 15, 175628642110667.	3.5	72
7	Spinal cord gray matter atrophy is associated with functional decline in postâ€polio syndrome. European Journal of Neurology, 2022, 29, 1435-1445.	3.3	6
8	Bundle myelin fraction (BMF) mapping of different white matter connections using microstructure informed tractography. NeuroImage, 2022, 249, 118922.	4.2	15
9	Multimodal Investigation of Neuroinflammation in Aviremic Patients With HIV on Antiretroviral Therapy and HIV Elite Controllers. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	5
10	Choroid Plexus Volume in Multiple Sclerosis vs Neuromyelitis Optica Spectrum Disorder. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	32
11	Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study. Lancet Neurology, The, 2022, 21, 246-257.	10.2	210
12	Multiple sclerosis cortical lesion detection with deep learning at ultraâ€highâ€field MRI. NMR in Biomedicine, 2022, 35, e4730.	2.8	9
13	Intrathecal IgM Synthesis Is Associated with Spinal Cord Manifestation and Neuronal Injury in Early MS. Annals of Neurology, 2022, 91, 814-820.	5.3	7
14	Fluid and White Matter Suppression. Investigative Radiology, 2022, 57, 592-600.	6.2	4
15	Association of Brain Atrophy With Disease Progression Independent of Relapse Activity in Patients With Relapsing Multiple Sclerosis. JAMA Neurology, 2022, 79, 682.	9.0	41
16	A New Advanced <scp>MRI</scp> Biomarker for Remyelinated Lesions in Multiple Sclerosis. Annals of Neurology, 2022, 92, 486-502.	5.3	28
17	Classification of multiple sclerosis based on patterns of <scp>CNS</scp> regional atrophy covariance. Human Brain Mapping, 2021, 42, 2399-2415.	3.6	10
18	Resolving bundle-specific intra-axonal T2 values within a voxel using diffusion-relaxation tract-based estimation. NeuroImage, 2021, 227, 117617.	4.2	28

#	Article	IF	CITATIONS
19	Normalization of Spinal Cord Total Cross-Sectional and Gray Matter Areas as Quantified With Radially Sampled Averaged Magnetization Inversion Recovery Acquisitions. Frontiers in Neurology, 2021, 12, 637198.	2.4	5
20	Myelin and axon pathology in multiple sclerosis assessed by myelin water and multi-shell diffusion imaging. Brain, 2021, 144, 1684-1696.	7.6	61
21	GAMER-MRI in Multiple Sclerosis Identifies the Diffusion-Based Microstructural Measures That Are Most Sensitive to Focal Damage: A Deep-Learning-Based Analysis and Clinico-Biological Validation. Frontiers in Neuroscience, 2021, 15, 647535.	2.8	4
22	Enhancing Reliability Of Structural Brain Connectivity With Outlier Adjusted Tractogram Filtering. , 2021, , .		1
23	Model-informed machine learning for multi-component <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mi>T</mml:mi><mml:mn>2</mml:mn></mml:msub>relaxomet Medical Image Analysis, 2021, 69, 101940.</mml:math 	11.6 ry.	26
24	MPRAGE to MP2RAGE UNI translation via generative adversarial network improves the automatic tissue and lesion segmentation in multiple sclerosis patients. Computers in Biology and Medicine, 2021, 132, 104297.	7.0	8
25	Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain, 2021, 144, 1296-1311.	7.6	81
26	Bundle-Specific Axon Diameter Index as a New Contrast to Differentiate White Matter Tracts. Frontiers in Neuroscience, 2021, 15, 646034.	2.8	11
27	Intrathecal Immunoglobulin M Synthesis is an Independent Biomarker for Higher Disease Activity and Severity in Multiple Sclerosis. Annals of Neurology, 2021, 90, 477-489.	5.3	16
28	Chronic White Matter Inflammation and Serum Neurofilament Levels in Multiple Sclerosis. Neurology, 2021, 97, e543-e553.	1.1	54
29	Imaging multiple sclerosis pathology at 160Âμm isotropic resolution by human whole-brain ex vivo magnetic resonance imaging at 3ÂT. Scientific Reports, 2021, 11, 15491.	3.3	5
30	Ultrahigh field in vivo characterization of microstructural abnormalities in the orbitofrontal cortex and amygdala in autism. European Journal of Neuroscience, 2021, 54, 6229-6236.	2.6	4
31	Central nervous system atrophy predicts future dynamics of disability progression in a realâ€world multiple sclerosis cohort. European Journal of Neurology, 2021, 28, 4153-4166.	3.3	10
32	Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset?. NeuroImage, 2021, 243, 118502.	4.2	94
33	GAMER MRI: Gated-attention mechanism ranking of multi-contrast MRI in brain pathology. NeuroImage: Clinical, 2021, 29, 102522.	2.7	4
34	New and enlarging white matter lesions adjacent to the ventricle system and thalamic atrophy are independently associated with lateral ventricular enlargement in multiple sclerosis. Journal of Neurology, 2020, 267, 192-202.	3.6	12
35	Quantitative brain relaxation atlases for personalized detection and characterization of brain pathology. Magnetic Resonance in Medicine, 2020, 83, 337-351.	3.0	19
36	Evolution of Cortical and White Matter Lesion Load in Early-Stage Multiple Sclerosis: Correlation With Neuroaxonal Damage and Clinical Changes. Frontiers in Neurology, 2020, 11, 973.	2.4	8

#	Article	IF	CITATIONS
37	RimNet: A deep 3D multimodal MRI architecture for paramagnetic rim lesion assessment in multiple sclerosis. NeuroImage: Clinical, 2020, 28, 102412.	2.7	21
38	Multiple sclerosis cortical and WM lesion segmentation at 3T MRI: a deep learning method based on FLAIR and MP2RAGE. NeuroImage: Clinical, 2020, 27, 102335.	2.7	54
39	Laminar analysis of the cerebellar cortex shows widespread damage in early MS patients: A pilot study at 7T MRI. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2020, 6, 205521732096140.	1.0	1
40	Improving Accuracy of Brainstem MRI Volumetry: Effects of Age and Sex, and Normalization Strategies. Frontiers in Neuroscience, 2020, 14, 609422.	2.8	0
41	Gadolinium should always be used to assess disease activity in MS – Yes. Multiple Sclerosis Journal, 2020, 26, 765-766.	3.0	9
42	Extraâ€Axial Inflammatory Signal in Parameninges in Migraine with Visual Aura. Annals of Neurology, 2020, 87, 939-949.	5.3	60
43	CVSnet: A machine learning approach for automated central vein sign assessment in multiple sclerosis. NMR in Biomedicine, 2020, 33, e4283.	2.8	31
44	Longitudinal analysis of white matter and cortical lesions in multiple sclerosis. NeuroImage: Clinical, 2019, 23, 101938.	2.7	25
45	Accurate, rapid and reliable, fully automated MRI brainstem segmentation for application in multiple sclerosis and neurodegenerative diseases. Human Brain Mapping, 2019, 40, 4091-4104.	3.6	22
46	Imaging of neuroinflammation in migraine with aura. Neurology, 2019, 92, e2038-e2050.	1.1	83
47	Shallow vs Deep Learning Architectures for White Matter Lesion Segmentation in the Early Stages of Multiple Sclerosis. Lecture Notes in Computer Science, 2019, , 142-151.	1.3	13
48	Automated Detection and Segmentation of Multiple Sclerosis Lesions Using Ultra–High-Field MP2RAGE. Investigative Radiology, 2019, 54, 356-364.	6.2	34
49	Personalized pathology maps to quantify diffuse and focal brain damage. NeuroImage: Clinical, 2019, 21, 101607.	2.7	14
50	Can Diffusion MRI Reveal Stroke-Induced Microstructural Changes in GM?. Lecture Notes in Computer Science, 2019, , 464-471.	1.3	0
51	Future Brain and Spinal Cord Volumetric Imaging in the Clinic for Monitoring Treatment Response in MS. Current Treatment Options in Neurology, 2018, 20, 17.	1.8	15
52	Surface-based characteristics of the cerebellar cortex visualized with ultra-high field MRI. NeuroImage, 2018, 172, 1-8.	4.2	18
53	Partial volume-aware assessment of multiple sclerosis lesions. NeuroImage: Clinical, 2018, 18, 245-253.	2.7	10
54	Central Slab versus Whole Brain to Measure Brain Atrophy in Multiple Sclerosis. European Neurology, 2018, 80, 207-214.	1.4	5

#	Article	IF	CITATIONS
55	On the Viability of Diffusion MRI-Based Microstructural Biomarkers in Ischemic Stroke. Frontiers in Neuroscience, 2018, 12, 92.	2.8	30
56	Serum neurofilament as a predictor of disease worsening and brain and spinal cord atrophy in multiple sclerosis. Brain, 2018, 141, 2382-2391.	7.6	345
57	An Ultra-High Field Study of Cerebellar Pathology in Early Relapsing-Remitting Multiple Sclerosis Using MP2RAGE. Investigative Radiology, 2017, 52, 265-273.	6.2	17
58	Segmentation of Cortical and Subcortical Multiple Sclerosis Lesions Based on Constrained Partial Volume Modeling. Lecture Notes in Computer Science, 2017, , 142-149.	1.3	6
59	Rivastigmine decreases brain damage in <scp>HIV</scp> patients with mild cognitive deficits. Annals of Clinical and Translational Neurology, 2017, 4, 915-920.	3.7	1
60	The Combined Quantification and Interpretation of Multiple Quantitative Magnetic Resonance Imaging Metrics Enlightens Longitudinal Changes Compatible with Brain Repair in Relapsing-Remitting Multiple Sclerosis Patients. Frontiers in Neurology, 2017, 8, 506.	2.4	27
61	A New Approach for Deep Gray Matter Analysis Using Partial-Volume Estimation. PLoS ONE, 2016, 11, e0148631.	2.5	7
62	Automated detection of white matter and cortical lesions in early stages of multiple sclerosis. Journal of Magnetic Resonance Imaging, 2016, 43, 1445-1454.	3.4	64
63	Shore-based biomarkers allow patient versus control classification in stroke. , 2016, , .		2
64	What lies beneath? Diffusion EAP-based study of brain tissue microstructure. Medical Image Analysis, 2016, 32, 145-156.	11.6	29
65	Infinite feature selection on shore-based biomarkers reveals connectivity modulation after stroke. , 2016, , .		1
66	Ensemble average propagator-based detection of microstructural alterations after stroke. International Journal of Computer Assisted Radiology and Surgery, 2016, 11, 1585-1597.	2.8	24
67	Serum neurofilament light chain in early relapsing remitting MS is increased and correlates with CSF levels and with MRI measures of disease severity. Multiple Sclerosis Journal, 2016, 22, 1550-1559.	3.0	202
68	In Vivo Imaging of Human Neuroinflammation. ACS Chemical Neuroscience, 2016, 7, 470-483.	3.5	165
69	White Matter MS-Lesion Segmentation Pub _newline ? Using a Geometric Brain Model. IEEE Transactions on Medical Imaging, 2016, 35, 1636-1646.	8.9	18
70	Multicontrast MRI Quantification of Focal Inflammation and Degeneration in Multiple Sclerosis. BioMed Research International, 2015, 2015, 1-9.	1.9	16
71	An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease. NeuroImage: Clinical, 2015, 7, 7-17.	2.7	217
72	A multi-contrast MRI study of microstructural brain damage in patients with mild cognitive impairment. NeuroImage: Clinical, 2015, 8, 631-639.	2.7	19

#	Article	IF	CITATIONS
73	Multicontrast <i>connectometry</i> : A new tool to assess cerebellum alterations in early relapsingâ€remitting multiple sclerosis. Human Brain Mapping, 2015, 36, 1609-1619.	3.6	30
74	Quantitative Analysis of Myelin and Axonal Remodeling in the Uninjured Motor Network After Stroke. Brain Connectivity, 2015, 5, 401-412.	1.7	26
75	Assessment of Mean Apparent Propagator-Based Indices as Biomarkers of Axonal Remodeling after Stroke. Lecture Notes in Computer Science, 2015, , 199-206.	1.3	7
76	Microstructural Description of Cerebral Tissues from Diffusion Spectrum Imaging Data. , 2014, , .		0
77	Diffusion MRI Compartmental Model Analysis of DSI Data. , 2014, , .		Ο
78	Structural abnormalities in the thalamus of migraineurs with aura: A multiparametric study at 3 T. Human Brain Mapping, 2014, 35, 1461-1468.	3.6	72
79	Advanced MRI unravels the nature of tissue alterations in early multiple sclerosis. Annals of Clinical and Translational Neurology, 2014, 1, 423-432.	3.7	67
80	MP2RAGE provides new clinically-compatible correlates of mild cognitive deficits in relapsing-remitting multiple sclerosis. Journal of Neurology, 2014, 261, 1606-1613.	3.6	24
81	Successful surgical resection in nonâ€lesional operculoâ€insular epilepsy without intracranial monitoring. Epileptic Disorders, 2013, 15, 148-157.	1.3	16
82	Migraineurs Without Aura Show Microstructural Abnormalities in the Cerebellum and Frontal Lobe. Cerebellum, 2013, 12, 812-818.	2.5	23
83	Tracking the source of cerebellar epilepsy: Hemifacial seizures associated with cerebellar cortical dysplasia. Epilepsy Research, 2013, 105, 245-249.	1.6	19
84	Magnetization transferâ€based 3D visualization of foot peripheral nerves. Journal of Magnetic Resonance Imaging, 2013, 37, 1234-1237.	3.4	6
85	Micro-Structural Brain Alterations in Aviremic HIV+ Patients with Minor Neurocognitive Disorders: A Multi-Contrast Study at High Field. PLoS ONE, 2013, 8, e72547.	2.5	19
86	MP2RAGE Multiple Sclerosis Magnetic Resonance Imaging at 3 T. Investigative Radiology, 2012, 47, 346-352.	6.2	72
87	Differences in white matter reflect atypical developmental trajectory in autism: A Tract-based Spatial Statistics study. NeuroImage: Clinical, 2012, 1, 48-56.	2.7	51
88	A new early and automated MRI-based predictor of motor improvement after stroke. Neurology, 2012, 79, 39-46.	1.1	49
89	The history and role of long duration stimulation in fMRI. NeuroImage, 2012, 62, 1051-1055.	4.2	4
90	Diffusion Tensor Imaging Shows Structural Remodeling of Stroke Mirror Region: Results from a Pilot Study. European Neurology, 2012, 67, 370-376.	1.4	21

#	Article	IF	CITATIONS
91	Effects of MRI scan acceleration on brain volume measurement consistency. Journal of Magnetic Resonance Imaging, 2012, 36, 1234-1240.	3.4	18
92	Surface-Based Structural Changes in Migraine. , 2012, , 202-212.		0
93	In-vivo magnetic resonance imaging of the structural core of the Papez circuit in humans. NeuroReport, 2011, 22, 227-231.	1.2	34
94	Towards a diffusion image processing validation and accuracy prediction framework. , 2011, , .		0
95	Simultaneous Doppelganger and limb amputation impression in right frontal opercular stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1209-1211.	1.9	7
96	Mutism and Amnesia following High-Voltage Electrical Injury: Psychogenic Symptomatology Triggered by Organic Dysfunction?. European Neurology, 2011, 66, 229-234.	1.4	5
97	Crossed Ataxia. Stroke, 2011, 42, e571-3.	2.0	1
98	An Introduction to Model-Independent Diffusion Magnetic Resonance Imaging. Topics in Magnetic Resonance Imaging, 2010, 21, 339-354.	1.2	25
99	Cerebellar Cortical Layers: In Vivo Visualization with Structural High-Field-Strength MR Imaging. Radiology, 2010, 254, 942-948.	7.3	66
100	Diffusion Spectrum Imaging Shows the Structural Basis of Functional Cerebellar Circuits in the Human Cerebellum In Vivo. PLoS ONE, 2009, 4, e5101.	2.5	116
101	Small cortical stroke in the "hand knob" mimics anterior interosseous syndrome. Journal of Neurology, 2008, 255, 1423-1424.	3.6	9
102	Sub-acute delayed failure of subthalamic DBS in Parkinson's disease: The role of micro-lesion effect. Parkinsonism and Related Disorders, 2008, 14, 109-113.	2.2	43
103	Thickening in the somatosensory cortex of patients with migraine. Neurology, 2007, 69, 1990-1995.	1.1	222
104	Interictal alterations of the trigeminal somatosensory pathway and periaqueductal gray matter in migraine. NeuroReport, 2007, 18, 301-305.	1.2	141
105	Thrombin-induced ischemic tolerance is prevented by inhibiting c-jun N-terminal kinase. Brain Research, 2007, 1148, 217-225.	2.2	19
106	Anatomical Alterations of the Visual Motion Processing Network in Migraine with and without Aura. PLoS Medicine, 2006, 3, e402.	8.4	218
107	Wegener Granulomatosis presenting with haemorragic stroke in a young adult. Journal of Neurology, 2005, 252, 615-616.	3.6	11
108	D-JNKI1, a Cell-Penetrating c-Jun-N-Terminal Kinase Inhibitor, Protects Against Cell Death in Severe Cerebral Ischemia. Stroke, 2004, 35, 1738-1743.	2.0	131

7

#	Article	IF	CITATIONS
109	Astrocyte-Specific Expression of Aquaporin-9 in Mouse Brain is Increased after Transient Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 477-482.	4.3	174
110	Brain network analyses in clinical neuroscience. Swiss Archives of Neurology, Psychiatry and Psychotherapy, 0, , .	0.1	1