Cristina Granziera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4749925/publications.pdf

Version: 2024-02-01

172207 128067 4,285 110 29 60 citations h-index g-index papers 116 116 116 5363 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Serum neurofilament as a predictor of disease worsening and brain and spinal cord atrophy in multiple sclerosis. Brain, 2018, 141, 2382-2391.	3.7	345
2	Thickening in the somatosensory cortex of patients with migraine. Neurology, 2007, 69, 1990-1995.	1.5	222
3	Anatomical Alterations of the Visual Motion Processing Network in Migraine with and without Aura. PLoS Medicine, 2006, 3, e402.	3.9	218
4	An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease. Neurolmage: Clinical, 2015, 7, 7-17.	1.4	217
5	Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study. Lancet Neurology, The, 2022, 21, 246-257.	4.9	210
6	Serum neurofilament light chain in early relapsing remitting MS is increased and correlates with CSF levels and with MRI measures of disease severity. Multiple Sclerosis Journal, 2016, 22, 1550-1559.	1.4	202
7	Astrocyte-Specific Expression of Aquaporin-9 in Mouse Brain is Increased after Transient Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 477-482.	2.4	174
8	In Vivo Imaging of Human Neuroinflammation. ACS Chemical Neuroscience, 2016, 7, 470-483.	1.7	165
9	Interictal alterations of the trigeminal somatosensory pathway and periaqueductal gray matter in migraine. NeuroReport, 2007, 18, 301-305.	0.6	141
10	D-JNKI1, a Cell-Penetrating c-Jun-N-Terminal Kinase Inhibitor, Protects Against Cell Death in Severe Cerebral Ischemia. Stroke, 2004, 35, 1738-1743.	1.0	131
11	Diffusion Spectrum Imaging Shows the Structural Basis of Functional Cerebellar Circuits in the Human Cerebellum In Vivo. PLoS ONE, 2009, 4, e5101.	1.1	116
12	Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset?. Neurolmage, 2021, 243, 118502.	2.1	94
13	Imaging of neuroinflammation in migraine with aura. Neurology, 2019, 92, e2038-e2050.	1.5	83
14	Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain, 2021, 144, 1296-1311.	3.7	81
15	MP2RAGE Multiple Sclerosis Magnetic Resonance Imaging at 3 T. Investigative Radiology, 2012, 47, 346-352.	3.5	72
16	Structural abnormalities in the thalamus of migraineurs with aura: A multiparametric study at 3 T. Human Brain Mapping, 2014, 35, 1461-1468.	1.9	72
17	Smouldering multiple sclerosis: the â€real MS'. Therapeutic Advances in Neurological Disorders, 2022, 15, 175628642110667.	1.5	72
18	Advanced MRI unravels the nature of tissue alterations in early multiple sclerosis. Annals of Clinical and Translational Neurology, 2014, 1, 423-432.	1.7	67

#	Article	IF	CITATIONS
19	Cerebellar Cortical Layers: In Vivo Visualization with Structural High-Field-Strength MR Imaging. Radiology, 2010, 254, 942-948.	3.6	66
20	Automated detection of white matter and cortical lesions in early stages of multiple sclerosis. Journal of Magnetic Resonance Imaging, 2016, 43, 1445-1454.	1.9	64
21	Myelin and axon pathology in multiple sclerosis assessed by myelin water and multi-shell diffusion imaging. Brain, 2021, 144, 1684-1696.	3.7	61
22	Extraâ€Axial Inflammatory Signal in Parameninges in Migraine with Visual Aura. Annals of Neurology, 2020, 87, 939-949.	2.8	60
23	Multiple sclerosis cortical and WM lesion segmentation at 3T MRI: a deep learning method based on FLAIR and MP2RAGE. NeuroImage: Clinical, 2020, 27, 102335.	1.4	54
24	Chronic White Matter Inflammation and Serum Neurofilament Levels in Multiple Sclerosis. Neurology, 2021, 97, e543-e553.	1.5	54
25	Differences in white matter reflect atypical developmental trajectory in autism: A Tract-based Spatial Statistics study. Neurolmage: Clinical, 2012, 1, 48-56.	1.4	51
26	A new early and automated MRI-based predictor of motor improvement after stroke. Neurology, 2012, 79, 39-46.	1.5	49
27	Sub-acute delayed failure of subthalamic DBS in Parkinson's disease: The role of micro-lesion effect. Parkinsonism and Related Disorders, 2008, 14, 109-113.	1.1	43
28	Association of Brain Atrophy With Disease Progression Independent of Relapse Activity in Patients With Relapsing Multiple Sclerosis. JAMA Neurology, 2022, 79, 682.	4.5	41
29	In-vivo magnetic resonance imaging of the structural core of the Papez circuit in humans. NeuroReport, 2011, 22, 227-231.	0.6	34
30	Automated Detection and Segmentation of Multiple Sclerosis Lesions Using Ultra–High-Field MP2RAGE. Investigative Radiology, 2019, 54, 356-364.	3.5	34
31	Choroid Plexus Volume in Multiple Sclerosis vs Neuromyelitis Optica Spectrum Disorder. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	32
32	CVSnet: A machine learning approach for automated central vein sign assessment in multiple sclerosis. NMR in Biomedicine, 2020, 33, e4283.	1.6	31
33	Multicontrast <i>connectometry</i> : A new tool to assess cerebellum alterations in early relapsingâ€remitting multiple sclerosis. Human Brain Mapping, 2015, 36, 1609-1619.	1.9	30
34	On the Viability of Diffusion MRI-Based Microstructural Biomarkers in Ischemic Stroke. Frontiers in Neuroscience, 2018, 12, 92.	1.4	30
35	What lies beneath? Diffusion EAP-based study of brain tissue microstructure. Medical Image Analysis, 2016, 32, 145-156.	7.0	29
36	Resolving bundle-specific intra-axonal T2 values within a voxel using diffusion-relaxation tract-based estimation. Neurolmage, 2021, 227, 117617.	2.1	28

#	Article	IF	CITATIONS
37	A New Advanced <scp>MRI</scp> Biomarker for Remyelinated Lesions in Multiple Sclerosis. Annals of Neurology, 2022, 92, 486-502.	2.8	28
38	The Combined Quantification and Interpretation of Multiple Quantitative Magnetic Resonance Imaging Metrics Enlightens Longitudinal Changes Compatible with Brain Repair in Relapsing-Remitting Multiple Sclerosis Patients. Frontiers in Neurology, 2017, 8, 506.	1.1	27
39	Quantitative Analysis of Myelin and Axonal Remodeling in the Uninjured Motor Network After Stroke. Brain Connectivity, 2015, 5, 401-412.	0.8	26
40	Model-informed machine learning for multi-component <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>T</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> relaxomet Medical Image Analysis, 2021, 69, 101940.	r 7 :0	26
41	An Introduction to Model-Independent Diffusion Magnetic Resonance Imaging. Topics in Magnetic Resonance Imaging, 2010, 21, 339-354.	0.7	25
42	Longitudinal analysis of white matter and cortical lesions in multiple sclerosis. NeuroImage: Clinical, 2019, 23, 101938.	1.4	25
43	MP2RAGE provides new clinically-compatible correlates of mild cognitive deficits in relapsing-remitting multiple sclerosis. Journal of Neurology, 2014, 261, 1606-1613.	1.8	24
44	Ensemble average propagator-based detection of microstructural alterations after stroke. International Journal of Computer Assisted Radiology and Surgery, 2016, 11, 1585-1597.	1.7	24
45	Migraineurs Without Aura Show Microstructural Abnormalities in the Cerebellum and Frontal Lobe. Cerebellum, 2013, 12, 812-818.	1.4	23
46	Accurate, rapid and reliable, fully automated MRI brainstem segmentation for application in multiple sclerosis and neurodegenerative diseases. Human Brain Mapping, 2019, 40, 4091-4104.	1.9	22
47	Diffusion Tensor Imaging Shows Structural Remodeling of Stroke Mirror Region: Results from a Pilot Study. European Neurology, 2012, 67, 370-376.	0.6	21
48	RimNet: A deep 3D multimodal MRI architecture for paramagnetic rim lesion assessment in multiple sclerosis. NeuroImage: Clinical, 2020, 28, 102412.	1.4	21
49	Thrombin-induced ischemic tolerance is prevented by inhibiting c-jun N-terminal kinase. Brain Research, 2007, 1148, 217-225.	1.1	19
50	Tracking the source of cerebellar epilepsy: Hemifacial seizures associated with cerebellar cortical dysplasia. Epilepsy Research, 2013, 105, 245-249.	0.8	19
51	Micro-Structural Brain Alterations in Aviremic HIV+ Patients with Minor Neurocognitive Disorders: A Multi-Contrast Study at High Field. PLoS ONE, 2013, 8, e72547.	1.1	19
52	A multi-contrast MRI study of microstructural brain damage in patients with mild cognitive impairment. NeuroImage: Clinical, 2015, 8, 631-639.	1.4	19
53	Quantitative brain relaxation atlases for personalized detection and characterization of brain pathology. Magnetic Resonance in Medicine, 2020, 83, 337-351.	1.9	19
54	Effects of MRI scan acceleration on brain volume measurement consistency. Journal of Magnetic Resonance Imaging, 2012, 36, 1234-1240.	1.9	18

#	Article	IF	CITATIONS
55	White Matter MS-Lesion Segmentation Pub_newline? Using a Geometric Brain Model. IEEE Transactions on Medical Imaging, 2016, 35, 1636-1646.	5.4	18
56	Surface-based characteristics of the cerebellar cortex visualized with ultra-high field MRI. NeuroImage, 2018, 172, 1-8.	2.1	18
57	An Ultra-High Field Study of Cerebellar Pathology in Early Relapsing-Remitting Multiple Sclerosis Using MP2RAGE. Investigative Radiology, 2017, 52, 265-273.	3 . 5	17
58	Successful surgical resection in nonâ€lesional operculoâ€insular epilepsy without intracranial monitoring. Epileptic Disorders, 2013, 15, 148-157.	0.7	16
59	Multicontrast MRI Quantification of Focal Inflammation and Degeneration in Multiple Sclerosis. BioMed Research International, 2015, 2015, 1-9.	0.9	16
60	Intrathecal Immunoglobulin M Synthesis is an Independent Biomarker for Higher Disease Activity and Severity in Multiple Sclerosis. Annals of Neurology, 2021, 90, 477-489.	2.8	16
61	Future Brain and Spinal Cord Volumetric Imaging in the Clinic for Monitoring Treatment Response in MS. Current Treatment Options in Neurology, 2018, 20, 17.	0.7	15
62	Bundle myelin fraction (BMF) mapping of different white matter connections using microstructure informed tractography. Neurolmage, 2022, 249, 118922.	2.1	15
63	Personalized pathology maps to quantify diffuse and focal brain damage. NeuroImage: Clinical, 2019, 21, 101607.	1.4	14
64	Shallow vs Deep Learning Architectures for White Matter Lesion Segmentation in the Early Stages of Multiple Sclerosis. Lecture Notes in Computer Science, 2019, , 142-151.	1.0	13
65	New and enlarging white matter lesions adjacent to the ventricle system and thalamic atrophy are independently associated with lateral ventricular enlargement in multiple sclerosis. Journal of Neurology, 2020, 267, 192-202.	1.8	12
66	Wegener Granulomatosis presenting with haemorragic stroke in a young adult. Journal of Neurology, 2005, 252, 615-616.	1.8	11
67	Bundle-Specific Axon Diameter Index as a New Contrast to Differentiate White Matter Tracts. Frontiers in Neuroscience, 2021, 15, 646034.	1.4	11
68	Partial volume-aware assessment of multiple sclerosis lesions. NeuroImage: Clinical, 2018, 18, 245-253.	1.4	10
69	Classification of multiple sclerosis based on patterns of <scp>CNS</scp> regional atrophy covariance. Human Brain Mapping, 2021, 42, 2399-2415.	1.9	10
70	CSF chitinase 3-like 1 is associated with iron rims in patients with a first demyelinating event. Multiple Sclerosis Journal, 2022, 28, 71-81.	1.4	10
71	Central nervous system atrophy predicts future dynamics of disability progression in a realâ€world multiple sclerosis cohort. European Journal of Neurology, 2021, 28, 4153-4166.	1.7	10
72	Small cortical stroke in the "hand knob" mimics anterior interosseous syndrome. Journal of Neurology, 2008, 255, 1423-1424.	1.8	9

#	Article	IF	Citations
73	Gadolinium should always be used to assess disease activity in MS $\hat{a}\in$ Yes. Multiple Sclerosis Journal, 2020, 26, 765-766.	1.4	9
74	Multiple sclerosis cortical lesion detection with deep learning at ultraâ€highâ€field MRI. NMR in Biomedicine, 2022, 35, e4730.	1.6	9
75	Evolution of Cortical and White Matter Lesion Load in Early-Stage Multiple Sclerosis: Correlation With Neuroaxonal Damage and Clinical Changes. Frontiers in Neurology, 2020, 11, 973.	1.1	8
76	MPRAGE to MP2RAGE UNI translation via generative adversarial network improves the automatic tissue and lesion segmentation in multiple sclerosis patients. Computers in Biology and Medicine, 2021, 132, 104297.	3.9	8
77	Regional Cerebellar Volume Loss Predicts Future Disability in Multiple Sclerosis Patients. Cerebellum, 2022, 21, 632-646.	1.4	8
78	Simultaneous Doppelganger and limb amputation impression in right frontal opercular stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1209-1211.	0.9	7
79	A New Approach for Deep Gray Matter Analysis Using Partial-Volume Estimation. PLoS ONE, 2016, 11, e0148631.	1.1	7
80	Assessment of Mean Apparent Propagator-Based Indices as Biomarkers of Axonal Remodeling after Stroke. Lecture Notes in Computer Science, 2015, , 199-206.	1.0	7
81	Intrathecal IgM Synthesis Is Associated with Spinal Cord Manifestation and Neuronal Injury in Early MS. Annals of Neurology, 2022, 91, 814-820.	2.8	7
82	Magnetization transferâ€based 3D visualization of foot peripheral nerves. Journal of Magnetic Resonance Imaging, 2013, 37, 1234-1237.	1.9	6
83	Segmentation of Cortical and Subcortical Multiple Sclerosis Lesions Based on Constrained Partial Volume Modeling. Lecture Notes in Computer Science, 2017, , 142-149.	1.0	6
84	Spinal cord gray matter atrophy is associated with functional decline in postâ€polio syndrome. European Journal of Neurology, 2022, 29, 1435-1445.	1.7	6
85	Mutism and Amnesia following High-Voltage Electrical Injury: Psychogenic Symptomatology Triggered by Organic Dysfunction?. European Neurology, 2011, 66, 229-234.	0.6	5
86	Central Slab versus Whole Brain to Measure Brain Atrophy in Multiple Sclerosis. European Neurology, 2018, 80, 207-214.	0.6	5
87	Normalization of Spinal Cord Total Cross-Sectional and Gray Matter Areas as Quantified With Radially Sampled Averaged Magnetization Inversion Recovery Acquisitions. Frontiers in Neurology, 2021, 12, 637198.	1.1	5
88	Imaging multiple sclerosis pathology at $160\hat{A}\hat{1}/4$ m isotropic resolution by human whole-brain ex vivo magnetic resonance imaging at 3ÅT. Scientific Reports, 2021, 11, 15491.	1.6	5
89	Multimodal Investigation of Neuroinflammation in Aviremic Patients With HIV on Antiretroviral Therapy and HIV Elite Controllers. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	5
90	The history and role of long duration stimulation in fMRI. Neurolmage, 2012, 62, 1051-1055.	2.1	4

#	Article	IF	CITATIONS
91	GAMER-MRI in Multiple Sclerosis Identifies the Diffusion-Based Microstructural Measures That Are Most Sensitive to Focal Damage: A Deep-Learning-Based Analysis and Clinico-Biological Validation. Frontiers in Neuroscience, 2021, 15, 647535.	1.4	4
92	Ultrahigh field in vivo characterization of microstructural abnormalities in the orbitofrontal cortex and amygdala in autism. European Journal of Neuroscience, 2021, 54, 6229-6236.	1.2	4
93	Microstructure-Weighted Connectomics in Multiple Sclerosis. Brain Connectivity, 2022, 12, 6-17.	0.8	4
94	GAMER MRI: Gated-attention mechanism ranking of multi-contrast MRI in brain pathology. NeuroImage: Clinical, 2021, 29, 102522.	1.4	4
95	Fluid and White Matter Suppression. Investigative Radiology, 2022, 57, 592-600.	3.5	4
96	Incorporating outlier information into diffusion-weighted MRI modeling for robust microstructural imaging and structural brain connectivity analyses. NeuroImage, 2022, 247, 118802.	2.1	3
97	Serum NfL levels in the first five years predict 10-year thalamic fraction in patients with MS. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2022, 8, 205521732110693.	0.5	3
98	Shore-based biomarkers allow patient versus control classification in stroke. , 2016, , .		2
99	Crossed Ataxia. Stroke, 2011, 42, e571-3.	1.0	1
100	Infinite feature selection on shore-based biomarkers reveals connectivity modulation after stroke. , 2016, , .		1
101	Rivastigmine decreases brain damage in <scp>HIV</scp> patients with mild cognitive deficits. Annals of Clinical and Translational Neurology, 2017, 4, 915-920.	1.7	1
102	Laminar analysis of the cerebellar cortex shows widespread damage in early MS patients: A pilot study at 7T MRI. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2020, 6, 205521732096140.	0.5	1
103	Enhancing Reliability Of Structural Brain Connectivity With Outlier Adjusted Tractogram Filtering. , 2021, , .		1
104	Brain network analyses in clinical neuroscience. Swiss Archives of Neurology, Psychiatry and Psychotherapy, $0, .$	0.4	1
105	Towards a diffusion image processing validation and accuracy prediction framework. , 2011, , .		0
106	Microstructural Description of Cerebral Tissues from Diffusion Spectrum Imaging Data., 2014,,.		0
107	Diffusion MRI Compartmental Model Analysis of DSI Data. , 2014, , .		0
108	Improving Accuracy of Brainstem MRI Volumetry: Effects of Age and Sex, and Normalization Strategies. Frontiers in Neuroscience, 2020, 14, 609422.	1.4	0

#	Article	IF	CITATIONS
109	Surface-Based Structural Changes in Migraine. , 2012, , 202-212.		O
110	Can Diffusion MRI Reveal Stroke-Induced Microstructural Changes in GM?. Lecture Notes in Computer Science, 2019, , 464-471.	1.0	0