
Ya-ming Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4749647/publications.pdf Version: 2024-02-01

VA-MINC 7HIL

#	Article	IF	CITATIONS
1	Differences and correlations between microstructure and macroscopic properties of mesophase cokes derived from the components of high temperature coal tar pitch. Fuel, 2022, 310, 122330.	6.4	32
2	Preparation of N/O-codoped quinoline pitch-based porous carbons for high-quality supercapacitor electrodes. New Journal of Chemistry, 2022, 46, 5266-5277.	2.8	5
3	Electrochemical performance of porous carbons derived from needle coke with different textures for supercapacitor electrode materials. Carbon Letters, 2021, 31, 57-65.	5.9	20
4	On-off-on nanosensors of carbon quantum dots derived from coal tar pitch for the detection of Cu2+, Fe3+, and L-ascorbic acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119325.	3.9	28
5	Atomic Cu dispersed ZIF-8 derived N-doped carbon for high-performance oxygen electrocatalysis in Zn-air battery. JPhys Materials, 2021, 4, 024006.	4.2	12
6	Synthesis and characterization of mesophase coke from medium–lowâ€ŧemperature coal tar pitch modified by highâ€pressure thermal polymerization. Asia-Pacific Journal of Chemical Engineering, 2021, 16, e2643.	1.5	6
7	Transformation of microstructure of coalâ€based and petroleumâ€based needle coke: Effects of calcination temperature. Asia-Pacific Journal of Chemical Engineering, 2021, 16, e2674.	1.5	8
8	Preparation and characterization of pitch coke from oxidized polymerized pitch. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2497.	1.5	8
9	Preparation and Characterization of Coal-Pitch-Based Needle Coke (Part III): The Effects of Quinoline Insoluble in Coal Tar Pitch. Energy & Fuels, 2020, 34, 8676-8684.	5.1	38
10	Preparation and Characterization of Coal Pitch-Based Needle Coke (Part II): The Effects of β Resin in Refined Coal Pitch. Energy & Fuels, 2020, 34, 2126-2134.	5.1	41
11	Changes in structure of coal liquefied pitch during liquid-phase carbonization process. Carbon Letters, 2019, 29, 37-45.	5.9	16
12	Thermal Conversion Behavior of Medium–Low–Temperature Coal Tar Pitch During Liquid–Phase Carbonization Process. ChemistrySelect, 2019, 4, 11886-11892.	1.5	8
13	Thermal conversion mechanism and thermodynamics of mixed oil in coalâ€based needle coke production. Asia-Pacific Journal of Chemical Engineering, 2019, 14, e2356.	1.5	1
14	Preparation and characterization of mosaic coke from heavyâ€phase coal pitch. Asia-Pacific Journal of Chemical Engineering, 2019, 14, e2369.	1.5	13
15	Significant enhancement of the oxygen reduction activity of self-heteroatom doped coal derived carbon through oxidative pretreatment. Electrochimica Acta, 2019, 312, 22-30.	5.2	21
16	Preparation and characterization of spinnable pitch for generalâ€purpose carbon fiber from refined pitch. Journal of Applied Polymer Science, 2019, 136, 47880.	2.6	4
17	Preparation and Characterization of Coal Pitch-Based Needle Coke (Part I): The Effects of Aromatic Index (<i>f</i> _a) in Refined Coal Pitch. Energy & Fuels, 2019, 33, 3456-3464.	5.1	62
18	Co-carbonization of single coking coal and pyrolytic extracts from datong long-flame coal. Metallurgical Research and Technology, 2019, 116, 115.	0.7	6

#	Article	IF	CITATIONS
19	Rheological characteristic of impregnating pitch from modified pitch. Journal of Thermal Analysis and Calorimetry, 2019, 137, 343-350.	3.6	1
20	Properties and micro-morphology of primary quinoline insoluble and mesocarbon microbeads. Journal of Materials Science, 2016, 51, 8098-8107.	3.7	26
21	Synthesis and Characterization of Needle Coke Produced from Thermal Modified Ethylene Residue Pitch. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-15.	2.3	0