Maria Asuncion Beitia Gomez De Segur:

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/4749603/publications.pdf
Version: 2024-02-01

A refined Wienerâ€"Hopf equivalence relation for polynomial matrices. Linear Algebra and Its
Applications, 2016, 506, 342-362.

Canonical form associated with the problem of perturbation of one column of a controllable pair. Linear Algebra and Its Applications, 2013, 438, 1587-1626.

The change of the Brunovsky structure of a controllable pair under one column perturbation in a particular case. Linear Algebra and Its Applications, 2012, 436, 1572-1588.

Realizations of perturbations of an observable pair with prescribed indices. Linear Algebra and Its
$4 \begin{aligned} & \text { Realizations of perturbations of an ob } \\ & \text { Applications, 2011, 434, 1325-1335. }\end{aligned}$

5 The change of feedback invariants under column perturbations: particular cases. Linear and
Multilinear Algebra, 2010, 58, 45-59.

Structured perturbation of the Brunovsky form: A particular case. Linear Algebra and Its Applications, 2009, 430, 1613-1625.
0.9

The change of similarity invariants under row perturbations. Linear Algebra and Its Applications, 2008, 429, 1302-1333.
0.9
0.90
$1.0 \quad 5$
$0.9 \quad 7$
The change of similarity invariants
Applications, 2008, 429, 482-496.

The change of the Jordan structure under one row perturbations. Linear Algebra and Its Applications,
2005, 401, 119-134.
0.9

18

Equivalence of quadruples and feedback equivalence of related pairs. Linear Algebra and Its Applications, 2005, 401, 353-369.

11 Sylvester matrix equation for matrix pencils. Linear Algebra and Its Applications, 1996, 232, 155-197.
0.9

10

Local behavior of Sylvester matrix equations related to block similarity. Linear Algebra and Its Applications, 1994, 199, 253-279.

A linear matrix equation: a criterion for block similarity. Linear and Multilinear Algebra, 1992, 31,
$93-118$.
13 A linear matrix equation: a criterion for block similarity. Linear and Multilinear Algebra, 1992, 31,
$93-118$.

Factorization of the matrix polynomial $\left.A(\hat{l} »)=A 0 \hat{l} » t+A l \hat{l} » t \hat{a}^{\wedge} 1+\hat{a}^{-}+A t \hat{a}^{\wedge} 1 \hat{l}\right\rangle>+A t$. Linear Algebra and lts Applications, 1989, 121, 423-432.
0.93
$0.9 \quad 2$
2
1.0

6

