## William A Mitch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4749568/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Chlorine and ozone disinfection and disinfection byproducts in postharvest food processing facilities: A review. Critical Reviews in Environmental Science and Technology, 2022, 52, 1825-1867.                                 | 6.6  | 26        |
| 2  | Bridging boundaries: On the contributions of Dr. Michael Plewa to the disinfection byproduct field.<br>Journal of Environmental Sciences, 2022, , .                                                                             | 3.2  | 0         |
| 3  | Formation of Oleic Acid Chlorohydrins in Vegetables during Postharvest Chlorine Disinfection.<br>Environmental Science & Technology, 2022, 56, 1233-1243.                                                                       | 4.6  | 6         |
| 4  | Effects of Intrusion on Disinfection Byproduct Formation in Intermittent Distribution Systems. ACS<br>ES&T Water, 2022, 2, 807-816.                                                                                             | 2.3  | 2         |
| 5  | Conversion of oxybenzone sunscreen to phototoxic glucoside conjugates by sea anemones and corals. Science, 2022, 376, 644-648.                                                                                                  | 6.0  | 48        |
| 6  | Disinfection byproducts formed during drinking water treatment reveal an export control point for<br>dissolved organic matter in a subalpine headwater stream. Water Research X, 2022, 15, 100144.                              | 2.8  | 7         |
| 7  | Recovery of Clean Water and Ammonia from Domestic Wastewater: Impacts on Embodied Energy and<br>Greenhouse Gas Emissions. Environmental Science & Technology, 2022, 56, 8712-8721.                                              | 4.6  | 17        |
| 8  | Tap water and bladder cancer in China. Nature Sustainability, 2022, 5, 643-644.                                                                                                                                                 | 11.5 | 7         |
| 9  | Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nature Sustainability, 2021, 4, 233-241.                                                                                             | 11.5 | 350       |
| 10 | Pilot UV-AOP Comparison of UV/Hydrogen Peroxide, UV/Free Chlorine, and UV/Monochloramine for<br>the Removal of <i>N</i> -Nitrosodimethylamine (NDMA) and NDMA Precursors. ACS ES&T Water, 2021, 1,<br>396-406.                  | 2.3  | 19        |
| 11 | Removal of Pathogens and Chemicals of Emerging Concern by Pilot-Scale FO-RO Hybrid Units Treating<br>RO Concentrate, Graywater, and Sewage for Centralized and Decentralized Potable Reuse. ACS ES&T<br>Water, 2021, 1, 89-100. | 2.3  | 15        |
| 12 | Evaluation of Histidine Reactivity and Byproduct Formation during Peptide Chlorination.<br>Environmental Science & Technology, 2021, 55, 1790-1799.                                                                             | 4.6  | 20        |
| 13 | Control of sulfides and coliphage MS2 using hydrogen peroxide and UV disinfection for non-potable reuse of pilot-scale anaerobic membrane bioreactor effluent. Water Research X, 2021, 11, 100097.                              | 2.8  | 11        |
| 14 | Use of trihalomethanes as a surrogate for haloacetonitrile exposure introduces misclassification bias. Water Research X, 2021, 11, 100089.                                                                                      | 2.8  | 21        |
| 15 | Optimization of reverse osmosis operational conditions to maximize ammonia removal from the effluent of an anaerobic membrane bioreactor. Environmental Science: Water Research and Technology, 2021, 7, 739-747.               | 1.2  | 22        |
| 16 | Disinfection Byproduct Recovery during Extraction and Concentration in Preparation for Chemical Analyses or Toxicity Assays. Environmental Science & amp; Technology, 2021, 55, 14136-14145.                                    | 4.6  | 23        |
| 17 | Sunlight-Driven Chlorate Formation during Produce Irrigation with Chlorine- or<br>Chloramine-Disinfected Water. Environmental Science & Technology, 2021, 55, 14876-14885                                                       | 4.6  | 8         |
| 18 | Chlorine taste can increase simulated exposure to both fecal contamination and disinfection byproducts in water supplies. Water Research, 2021, 207, 117806.                                                                    | 5.3  | 8         |

| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Production of <i>N</i> -Nitrosodimethylamine Precursors by Biofilters Is Highly Dynamic and Affected by Filter Media Type and Backwashing Conditions. ACS ES&T Water, 2021, 1, 661-671.                                                                                      | 2.3 | 3         |
| 20 | Role of absorber and desorber units and operational conditions for N-nitrosamine formation during amine-based carbon capture. Water Research, 2020, 170, 115299.                                                                                                             | 5.3 | 5         |
| 21 | Sulfide-induced reduction of nitrobenzene mediated by different size fractions of rice straw-derived<br>black carbon: A key role played by reactive polysulfide species. Science of the Total Environment, 2020,<br>748, 141365.                                             | 3.9 | 11        |
| 22 | <i>N</i> -Nitrosodimethylamine Formation during UV/Hydrogen Peroxide and UV/Chlorine Advanced<br>Oxidation Process Treatment Following Reverse Osmosis for Potable Reuse. Environmental Science<br>& Technology, 2020, 54, 15465-15475.                                      | 4.6 | 31        |
| 23 | Transformation of Trace Organic Contaminants from Reverse Osmosis Concentrate by Open-Water<br>Unit-Process Wetlands with and without Ozone Pretreatment. Environmental Science &<br>Technology, 2020, 54, 16176-16185.                                                      | 4.6 | 17        |
| 24 | Designing a Nanoscale Three-phase Electrochemical Pathway to Promote Pt-catalyzed Formaldehyde<br>Oxidation. Nano Letters, 2020, 20, 8719-8724.                                                                                                                              | 4.5 | 15        |
| 25 | Reductive Electrochemical Activation of Hydrogen Peroxide as an Advanced Oxidation Process for<br>Treatment of Reverse Osmosis Permeate during Potable Reuse. Environmental Science &<br>Technology, 2020, 54, 12593-12601.                                                  | 4.6 | 27        |
| 26 | Pilot-scale ozone/biological activated carbon treatment of reverse osmosis concentrate: potential<br>for synergism between nitrate and contaminant removal and potable reuse. Environmental Science:<br>Water Research and Technology, 2020, 6, 1421-1431.                   | 1.2 | 11        |
| 27 | Novel Chlorination Byproducts of Tryptophan: Initial High-Yield Transformation Products versus<br>Small Molecule Disinfection Byproducts. Environmental Science and Technology Letters, 2020, 7,<br>149-155.                                                                 | 3.9 | 26        |
| 28 | Efficacy of ozone for removal of pesticides, metals and indicator virus from reverse osmosis<br>concentrates generated during potable reuse of municipal wastewaters. Water Research, 2020, 176,<br>115744.                                                                  | 5.3 | 45        |
| 29 | Assessing Additivity of Cytotoxicity Associated with Disinfection Byproducts in Potable Reuse and<br>Conventional Drinking Waters. Environmental Science & Technology, 2020, 54, 5729-5736.                                                                                  | 4.6 | 102       |
| 30 | Exposure to disinfection by-products in swimming pools and biomarkers of genotoxicity and respiratory damage – The PISCINA2 Study. Environment International, 2019, 131, 104988.                                                                                             | 4.8 | 26        |
| 31 | Serum electrolytes can promote hydroxyl radical-initiated biomolecular damage from inflammation.<br>Free Radical Biology and Medicine, 2019, 141, 475-482.                                                                                                                   | 1.3 | 6         |
| 32 | Pilot-scale evaluation of oxidant speciation, 1,4-dioxane degradation and disinfection byproduct<br>formation during UV/hydrogen peroxide, UV/free chlorine and UV/chloramines advanced oxidation<br>process treatment for potable reuse. Water Research, 2019, 164, 114939. | 5.3 | 87        |
| 33 | Co-occurrence of geogenic and anthropogenic contaminants in groundwater from Rajasthan, India.<br>Science of the Total Environment, 2019, 688, 1216-1227.                                                                                                                    | 3.9 | 73        |
| 34 | Disinfection Byproducts in Rajasthan, India: Are Trihalomethanes a Sufficient Indicator of Disinfection<br>Byproduct Exposure in Low-Income Countries?. Environmental Science & Technology, 2019, 53,<br>12007-12017.                                                        | 4.6 | 36        |
| 35 | Bench-scale column evaluation of factors associated with changes in N-nitrosodimethylamine (NDMA) precursor concentrations during drinking water biofiltration. Water Research, 2019, 167, 115103.                                                                           | 5.3 | 17        |
| 36 | Evaluation of Enhanced Ozone–Biologically Active Filtration Treatment for the Removal of 1,4-Dioxane and Disinfection Byproduct Precursors from Wastewater Effluent. Environmental Science & Technology, 2019, 53, 2720-2730.                                                | 4.6 | 36        |

| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Predicting the Contribution of Chloramines to Contaminant Decay during Ultraviolet/Hydrogen<br>Peroxide Advanced Oxidation Process Treatment for Potable Reuse. Environmental Science &<br>Technology, 2019, 53, 4416-4425.                                                  | 4.6 | 66        |
| 38 | Comparing industrial and domestic discharges as sources of <i>N</i> -nitrosamines and their chloramine or ozone-reactive precursors. Environmental Science: Water Research and Technology, 2019, 5, 726-736.                                                                 | 1.2 | 14        |
| 39 | A Tale of Two Treatments: The Multiple Barrier Approach to Removing Chemical Contaminants During<br>Potable Water Reuse. Accounts of Chemical Research, 2019, 52, 615-622.                                                                                                   | 7.6 | 112       |
| 40 | Comparison of Toxicity-Weighted Disinfection Byproduct Concentrations in Potable Reuse Waters and<br>Conventional Drinking Waters as a New Approach to Assessing the Quality of Advanced Treatment<br>Train Waters. Environmental Science & Technology, 2019, 53, 3729-3738. | 4.6 | 80        |
| 41 | Evaluation of a Pilot Anaerobic Secondary Effluent for Potable Reuse: Impact of Different<br>Disinfection Schemes on Organic Fouling of RO Membranes and DBP Formation. Environmental<br>Science & Technology, 2019, 53, 3166-3176.                                          | 4.6 | 27        |
| 42 | Enhanced Phototransformation of Tetracycline at Smectite Clay Surfaces under Simulated Sunlight<br>via a Lewis-Base Catalyzed Alkalization Mechanism. Environmental Science & Technology, 2019, 53,<br>710-718.                                                              | 4.6 | 60        |
| 43 | Formation of N-nitrosamines during the analysis of municipal secondary biological nutrient removal process effluents by US EPA method 521. Chemosphere, 2019, 221, 597-605.                                                                                                  | 4.2 | 10        |
| 44 | Pilot-scale comparison of microfiltration/reverse osmosis and ozone/biological activated carbon with UV/hydrogen peroxide or UV/free chlorine AOP treatment for controlling disinfection byproducts during wastewater reuse. Water Research, 2019, 152, 215-225.             | 5.3 | 87        |
| 45 | Drinking Water Disinfection Byproducts (DBPs) and Human Health Effects: Multidisciplinary<br>Challenges and Opportunities. Environmental Science & Technology, 2018, 52, 1681-1689.                                                                                          | 4.6 | 584       |
| 46 | Capture and Reductive Transformation of Halogenated Pesticides by an Activated Carbon-Based<br>Electrolysis System for Treatment of Runoff. Environmental Science & Technology, 2018, 52,<br>1435-1443.                                                                      | 4.6 | 8         |
| 47 | Impact of Combined Chlorination and Chloramination Conditions on <i>N</i> â€Nitrosodimethylamine<br>Formation. Journal - American Water Works Association, 2018, 110, 11-24.                                                                                                 | 0.2 | 10        |
| 48 | Behavior of NDMA precursors at 21 full-scale water treatment facilities. Environmental Science:<br>Water Research and Technology, 2018, 4, 1966-1978.                                                                                                                        | 1.2 | 13        |
| 49 | Chlorotyrosines versus Volatile Byproducts from Chlorine Disinfection during Washing of Spinach and Lettuce. Environmental Science & amp; Technology, 2018, 52, 9361-9369.                                                                                                   | 4.6 | 22        |
| 50 | Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. Environmental Sciences: Processes and Impacts, 2018, 20, 1089-1122.                                                                               | 1.7 | 180       |
| 51 | Tradeoffs between pathogen inactivation and disinfection byproduct formation during sequential chlorine and chloramine disinfection for wastewater reuse. Water Research, 2018, 143, 579-588.                                                                                | 5.3 | 58        |
| 52 | Distributed Chlorine Injection To Minimize NDMA Formation during Chloramination of Wastewater.<br>Environmental Science and Technology Letters, 2018, 5, 462-466.                                                                                                            | 3.9 | 26        |
| 53 | Effect of Ozonation and Biological Activated Carbon Treatment of Wastewater Effluents on<br>Formation of <i>N</i> -nitrosamines and Halogenated Disinfection Byproducts. Environmental Science<br>& Technology, 2017, 51, 2329-2338.                                         | 4.6 | 124       |
| 54 | Regulated and unregulated halogenated disinfection byproduct formation from chlorination of saline groundwater. Water Research, 2017, 122, 633-644.                                                                                                                          | 5.3 | 80        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Nitrosamines and Nitramines in Amine-Based Carbon Dioxide Capture Systems: Fundamentals,<br>Engineering Implications, and Knowledge Gaps. Environmental Science & Technology, 2017, 51,<br>11522-11536.                              | 4.6 | 39        |
| 56 | Environmental and Human Impacts of Unconventional Energy Development. Environmental Science<br>& Technology, 2017, 51, 10271-10273.                                                                                                  | 4.6 | 11        |
| 57 | Activity and Reactivity of Pyrogenic Carbonaceous Matter toward Organic Compounds.<br>Environmental Science & Technology, 2017, 51, 8893-8908.                                                                                       | 4.6 | 213       |
| 58 | Comparing the UV/Monochloramine and UV/Free Chlorine Advanced Oxidation Processes (AOPs) to the<br>UV/Hydrogen Peroxide AOP Under Scenarios Relevant to Potable Reuse. Environmental Science &<br>Technology, 2017, 51, 13859-13868. | 4.6 | 313       |
| 59 | Reverse Osmosis Shifts Chloramine Speciation Causing Re-Formation of NDMA during Potable Reuse of<br>Wastewater. Environmental Science & Technology, 2017, 51, 8589-8596.                                                            | 4.6 | 59        |
| 60 | New Takes on Emerging Contaminants: Preface. Journal of Environmental Sciences, 2017, 62, 1-2.                                                                                                                                       | 3.2 | 1         |
| 61 | Development of an Activated Carbon-Based Electrode for the Capture and Rapid Electrolytic Reductive<br>Debromination of Methyl Bromide from Postharvest Fumigations. Environmental Science &<br>Technology, 2016, 50, 11200-11208.   | 4.6 | 9         |
| 62 | Relative Importance of Different Water Categories as Sources of <i>N</i> -Nitrosamine Precursors.<br>Environmental Science & Technology, 2016, 50, 13239-13248.                                                                      | 4.6 | 65        |
| 63 | Environmental and personal determinants of the uptake of disinfection by-products during swimming.<br>Environmental Research, 2016, 149, 206-215.                                                                                    | 3.7 | 39        |
| 64 | N-Nitrosamines and halogenated disinfection byproducts in U.S. Full Advanced Treatment trains for potable reuse. Water Research, 2016, 101, 176-186.                                                                                 | 5.3 | 173       |
| 65 | Reductive dehalogenation of disinfection byproducts by an activated carbon-based electrode system.<br>Water Research, 2016, 98, 354-362.                                                                                             | 5.3 | 33        |
| 66 | Halogen radicals contribute to photooxidation in coastal and estuarine waters. Proceedings of the<br>National Academy of Sciences of the United States of America, 2016, 113, 5868-5873.                                             | 3.3 | 174       |
| 67 | Development of Predictive Models for the Degradation of Halogenated Disinfection Byproducts<br>during the UV/H <sub>2</sub> O <sub>2</sub> Advanced Oxidation Process. Environmental Science<br>& Technology, 2016, 50, 11209-11217. | 4.6 | 95        |
| 68 | Halogen Radicals Promote the Photodegradation of Microcystins in Estuarine Systems. Environmental<br>Science & Technology, 2016, 50, 8505-8513.                                                                                      | 4.6 | 51        |
| 69 | Structural Modifications to Quaternary Ammonium Polymer Coagulants to Inhibit<br><i>N</i> -Nitrosamine Formation. Environmental Science & Technology, 2016, 50, 4778-4787.                                                           | 4.6 | 35        |
| 70 | Ozone Promotes Chloropicrin Formation by Oxidizing Amines to Nitro Compounds. Environmental<br>Science & Technology, 2016, 50, 1209-1217.                                                                                            | 4.6 | 58        |
| 71 | Effect of matrix components on UV/H2O2 and UV/S2O82â^' advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities. Water Research, 2016, 89, 192-200.           | 5.3 | 232       |
| 72 | Impact of Nitrification on the Formation of <i>N</i> -Nitrosamines and Halogenated Disinfection<br>Byproducts within Distribution System Storage Facilities. Environmental Science & Technology,<br>2016, 50, 2964-2973.             | 4.6 | 74        |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Control of nitrosamines during non-potable and de facto wastewater reuse with medium pressure<br>ultraviolet light and preformed monochloramine. Environmental Science: Water Research and<br>Technology, 2016, 2, 502-510.                 | 1.2 | 21        |
| 74 | Influence of Bi-doping on Mn1â                                                                                                                                                                                                              | 6.6 | 31        |
| 75 | Formation Pathways and Trade-Offs between Haloacetamides and Haloacetaldehydes during Combined<br>Chlorination and Chloramination of Lignin Phenols and Natural Waters. Environmental Science &<br>Technology, 2015, 49, 14432-14440.       | 4.6 | 77        |
| 76 | Reduction of Nitroaromatics Sorbed to Black Carbon by Direct Reaction with Sorbed Sulfides.<br>Environmental Science & Technology, 2015, 49, 3419-3426.                                                                                     | 4.6 | 66        |
| 77 | Iodide, Bromide, and Ammonium in Hydraulic Fracturing and Oil and Gas Wastewaters: Environmental<br>Implications. Environmental Science & Technology, 2015, 49, 1955-1963.                                                                  | 4.6 | 215       |
| 78 | Predicting <i>N</i> -Nitrosamines: <i>N</i> -Nitrosodiethanolamine as a Significant Component of Total<br><i>N</i> -Nitrosamines in Recycled Wastewater. Environmental Science and Technology Letters, 2015, 2,<br>54-58.                   | 3.9 | 40        |
| 79 | Determinants of disinfectant pretreatment efficacy for nitrosamine control in chloraminated drinking water. Water Research, 2015, 84, 161-170.                                                                                              | 5.3 | 46        |
| 80 | Controlling Nitrosamines, Nitramines, and Amines in Amine-Based CO <sub>2</sub> Capture Systems<br>with Continuous Ultraviolet and Ozone Treatment of Washwater. Environmental Science &<br>Technology, 2015, 49, 8878-8886.                | 4.6 | 24        |
| 81 | Destruction of Methyl Bromide Sorbed to Activated Carbon by Thiosulfate or Electrolysis.<br>Environmental Science & Technology, 2015, 49, 4515-4521.                                                                                        | 4.6 | 14        |
| 82 | Contribution of <i>N</i> -Nitrosamines and Their Precursors to Domestic Sewage by Greywaters and Blackwaters. Environmental Science & Technology, 2015, 49, 13158-13167.                                                                    | 4.6 | 83        |
| 83 | Degradation of Amino Acids and Structure in Model Proteins and Bacteriophage MS2 by Chlorine,<br>Bromine, and Ozone. Environmental Science & Technology, 2015, 49, 13331-13339.                                                             | 4.6 | 37        |
| 84 | Influence of Dissolved Metals on <i>N</i> -Nitrosamine Formation under Amine-based CO <sub>2</sub><br>Capture Conditions. Environmental Science & Technology, 2015, 49, 11974-11981.                                                        | 4.6 | 32        |
| 85 | Leveraging the Mechanism of Oxidative Decay for Adenylate Kinase to Design Structural and Functional Resistances. ACS Chemical Biology, 2015, 10, 2393-2404.                                                                                | 1.6 | 4         |
| 86 | Impact of UV/H <sub>2</sub> O <sub>2</sub> Pre-Oxidation on the Formation of Haloacetamides and<br>Other Nitrogenous Disinfection Byproducts during Chlorination. Environmental Science &<br>Technology, 2014, 48, 12190-12198.             | 4.6 | 123       |
| 87 | Synthesis and Application of a Quaternary Phosphonium Polymer Coagulant To Avoid<br><i>N</i> -Nitrosamine Formation. Environmental Science & Technology, 2014, 48, 13392-13401.                                                             | 4.6 | 22        |
| 88 | Superior Removal of Disinfection Byproduct Precursors and Pharmaceuticals from Wastewater in a Staged Anaerobic Fluidized Membrane Bioreactor Compared to Activated Sludge. Environmental Science and Technology Letters, 2014, 1, 459-464. | 3.9 | 53        |
| 89 | Effects of Flue Gas Compositions on Nitrosamine and Nitramine Formation in Postcombustion CO2<br>Capture Systems. Environmental Science & Technology, 2014, 48, 7519-7526.                                                                  | 4.6 | 41        |
| 90 | Sunlight-Driven Photochemical Halogenation of Dissolved Organic Matter in Seawater: A Natural<br>Abiotic Source of Organobromine and Organoiodine. Environmental Science & Technology, 2014,<br>48, 7418-7427.                              | 4.6 | 80        |

| #   | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Enhanced Formation of Disinfection Byproducts in Shale Gas Wastewater-Impacted Drinking Water Supplies. Environmental Science & Technology, 2014, 48, 11161-11169.                                                                                     | 4.6 | 157       |
| 92  | Comparative <i>in Vitro</i> Toxicity of Nitrosamines and Nitramines Associated with Amine-based<br>Carbon Capture and Storage. Environmental Science & Technology, 2014, 48, 8203-8211.                                                                | 4.6 | 50        |
| 93  | Comparison of Halide Impacts on the Efficiency of Contaminant Degradation by Sulfate and Hydroxyl<br>Radical-Based Advanced Oxidation Processes (AOPs). Environmental Science & Technology, 2014,<br>48, 2344-2351.                                    | 4.6 | 785       |
| 94  | Effect of Chemical Oxidation on the Sorption Tendency of Dissolved Organic Matter to a Model<br>Hydrophobic Surface. Environmental Science & Technology, 2014, 48, 5118-5126.                                                                          | 4.6 | 35        |
| 95  | Relative Importance of <i>N</i> -Nitrosodimethylamine Compared to Total <i>N</i> -Nitrosamines in<br>Drinking Waters. Environmental Science & Technology, 2013, 47, 3648-3656.                                                                         | 4.6 | 66        |
| 96  | Role of Lysine during Protein Modification by HOCl and HOBr: Halogen-Transfer Agent or Sacrificial Antioxidant?. Biochemistry, 2013, 52, 1260-1271.                                                                                                    | 1.2 | 35        |
| 97  | Role of Black Carbon Electrical Conductivity in Mediating Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)<br>Transformation on Carbon Surfaces by Sulfides. Environmental Science & Technology, 2013, 47,<br>7129-7136.                                  | 4.6 | 155       |
| 98  | Formation, precursors, control, and occurrence of nitrosamines in drinking water: A review. Water Research, 2013, 47, 4433-4450.                                                                                                                       | 5.3 | 445       |
| 99  | Application of Ultraviolet, Ozone, and Advanced Oxidation Treatments to Washwaters To Destroy<br>Nitrosamines, Nitramines, Amines, and Aldehydes Formed during Amine-Based Carbon Capture.<br>Environmental Science & Technology, 2013, 47, 2799-2808. | 4.6 | 51        |
| 100 | Influence of Amine Structural Characteristics on <i>N</i> -Nitrosamine Formation Potential Relevant<br>to Postcombustion CO <sub>2</sub> Capture Systems. Environmental Science & Technology, 2013,<br>47, 13175-13183.                                | 4.6 | 45        |
| 101 | Influence of Ionic Strength on Triplet-State Natural Organic Matter Loss by Energy Transfer and<br>Electron Transfer Pathways. Environmental Science & Technology, 2013, 47, 10987-10994.                                                              | 4.6 | 109       |
| 102 | Formation and control of emerging C―and Nâ€ÐBPs in drinking water. Journal - American Water Works<br>Association, 2012, 104, E582.                                                                                                                     | 0.2 | 66        |
| 103 | Impact of Halide Ions on Natural Organic Matter-Sensitized Photolysis of 17β-Estradiol in Saline<br>Waters. Environmental Science & Technology, 2012, 46, 7128-7134.                                                                                   | 4.6 | 83        |
| 104 | Dichloroacetonitrile and Dichloroacetamide Can Form Independently during Chlorination and<br>Chloramination of Drinking Waters, Model Organic Matters, and Wastewater Effluents.<br>Environmental Science & Technology, 2012, 46, 10624-10631.         | 4.6 | 150       |
| 105 | Measurement of Nitrosamine and Nitramine Formation from NO <sub><i>x</i></sub> Reactions with<br>Amines during Amine-Based Carbon Dioxide Capture for Postcombustion Carbon Sequestration.<br>Environmental Science & Technology, 2012, 46, 9793-9801. | 4.6 | 108       |
| 106 | Comparative genotoxicity of nitrosamine drinking water disinfection byproducts in Salmonella and<br>mammalian cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 741,<br>109-115.                                      | 0.9 | 62        |
| 107 | Halonitroalkanes, Halonitriles, Haloamides, and N-Nitrosamines: A Critical Review of Nitrogenous<br>Disinfection Byproduct Formation Pathways. Environmental Science & Technology, 2012, 46, 119-131.<br>                                              | 4.6 | 592       |
| 108 | Trade-Offs in Disinfection Byproduct Formation Associated with Precursor Preoxidation for Control of <i>N</i> NV/i>Nitrosodimethylamine Formation. Environmental Science & amp; Technology, 2012, 46, 4809-4818.                                       | 4.6 | 152       |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Impact of UV Disinfection Combined with Chlorination/Chloramination on the Formation of<br>Halonitromethanes and Haloacetonitriles in Drinking Water. Environmental Science &<br>Technology, 2011, 45, 3657-3664.            | 4.6 | 132       |
| 110 | Sorbic acid as a quantitative probe for the formation, scavenging and steady-state concentrations of the triplet-excited state of organic compounds. Water Research, 2011, 45, 6535-6544.                                    | 5.3 | 150       |
| 111 | Comparative Mammalian Cell Cytotoxicity of Water Concentrates from Disinfected Recreational<br>Pools. Environmental Science & Technology, 2011, 45, 4159-4165.                                                               | 4.6 | 74        |
| 112 | Quaternary Amines As Nitrosamine Precursors: A Role for Consumer Products?. Environmental<br>Science & Technology, 2010, 44, 1224-1231.                                                                                      | 4.6 | 139       |
| 113 | Genotoxicity of Water Concentrates from Recreational Pools after Various Disinfection Methods.<br>Environmental Science & Technology, 2010, 44, 3527-3532.                                                                   | 4.6 | 111       |
| 114 | Application of an Optimized Total <i>N</i> -Nitrosamine (TONO) Assay to Pools: Placing<br><i>N</i> -Nitrosodimethylamine (NDMA) Determinations into Perspective. Environmental Science &<br>Technology, 2010, 44, 3369-3375. | 4.6 | 47        |
| 115 | Influence of the Method of Reagent Addition on Dichloroacetonitrile Formation during<br>Chloramination. Environmental Science & Technology, 2010, 44, 700-706.                                                               | 4.6 | 19        |
| 116 | Black Carbon-Mediated Destruction of Nitroglycerin and RDX By Hydrogen Sulfide. Environmental<br>Science & Technology, 2010, 44, 6409-6415.                                                                                  | 4.6 | 82        |
| 117 | Comparison of Byproduct Formation in Waters Treated with Chlorine and Iodine: Relevance to<br>Point-of-Use Treatment. Environmental Science & Technology, 2010, 44, 8446-8452.                                               | 4.6 | 111       |
| 118 | Fecal coliform accumulation within a river subject to seasonally-disinfected wastewater discharges.<br>Water Research, 2010, 44, 4776-4782.                                                                                  | 5.3 | 39        |
| 119 | Effect of Halide Ions and Carbonates on Organic Contaminant Degradation by Hydroxyl Radical-Based<br>Advanced Oxidation Processes in Saline Waters. Environmental Science & Technology, 2010, 44,<br>6822-6828.              | 4.6 | 717       |
| 120 | Chapter 7 Micropollutants in Water Recycling: A Case Study of N-Nitrosodimethylamine (NDMA)<br>Exposure from Water versus Food. Sustainability Science and Engineering, 2010, , 203-228.                                     | 0.6 | 12        |
| 121 | Impact of halides on the photobleaching of dissolved organic matter. Marine Chemistry, 2009, 115, 134-144.                                                                                                                   | 0.9 | 82        |
| 122 | Nitrosamine, Dimethylnitramine, and Chloropicrin Formation during Strong Base Anion-Exchange<br>Treatment. Environmental Science & Technology, 2009, 43, 466-472.                                                            | 4.6 | 53        |
| 123 | Occurrence and Fate of Nitrosamines and Their Precursors in Municipal Sludge and Anaerobic<br>Digestion Systems. Environmental Science & Technology, 2009, 43, 3087-3093.                                                    | 4.6 | 66        |
| 124 | Exploring Amino Acid Side Chain Decomposition Using Enzymatic Digestion and HPLC-MS: Combined Lysine Transformations in Chlorinated Waters. Analytical Chemistry, 2009, 81, 7650-7659.                                       | 3.2 | 13        |
| 125 | Degradation of Tertiary Alkylamines during Chlorination/Chloramination: Implications for Formation of Aldehydes, Nitriles, Halonitroalkanes, and Nitrosamines. Environmental Science & 2008, 42, 4811-4817.                  | 4.6 | 102       |
| 126 | Nitrosamine Carcinogens Also Swim in Chlorinated Pools. Environmental Science & Technology, 2008, 42, 1032-1037.                                                                                                             | 4.6 | 116       |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Abiotic Degradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine in the Presence of Hydrogen Sulfide and<br>Black Carbon. Environmental Science & Technology, 2008, 42, 2118-2123.                          | 4.6 | 69        |
| 128 | Nitrile, Aldehyde, and Halonitroalkane Formation during Chlorination/Chloramination of Primary<br>Amines. Environmental Science & Technology, 2007, 41, 1288-1296.                                        | 4.6 | 144       |
| 129 | Enhanced Nitrogenous Disinfection ByProduct Formation near the Breakpoint:  Implications for Nitrification Control. Environmental Science & Technology, 2007, 41, 7039-7046.                              | 4.6 | 82        |
| 130 | Nitrosamine Formation Pathway Revisited:Â The Importance of Chloramine Speciation and Dissolved<br>Oxygen. Environmental Science & Technology, 2006, 40, 6007-6014.                                       | 4.6 | 272       |
| 131 | Occurrence and Fate of Nitrosamines and Nitrosamine Precursors in Wastewater-Impacted Surface<br>Waters Using Boron As a Conservative Tracer. Environmental Science & Technology, 2006, 40,<br>3203-3210. | 4.6 | 119       |
| 132 | Sources and Fate of Nitrosodimethylamine and its Precursors in Municipal Wastewater Treatment<br>Plants. Water Environment Research, 2005, 77, 32-39.                                                     | 1.3 | 132       |
| 133 | Minimization of NDMA Formation during Chlorine Disinfection of Municipal Wastewater by<br>Application of Pre-Formed Chloramines. Environmental Engineering Science, 2005, 22, 882-890.                    | 0.8 | 54        |
| 134 | Influence of the Order of Reagent Addition on NDMA Formation during Chloramination.<br>Environmental Science & Technology, 2005, 39, 3811-3818.                                                           | 4.6 | 225       |
| 135 | Characterization and Fate ofN-Nitrosodimethylamine Precursors in Municipal Wastewater Treatment<br>Plants. Environmental Science & Technology, 2004, 38, 1445-1454.                                       | 4.6 | 327       |
| 136 | SOURCES AND FATE OF NITROSODIMETHYLAMINE (NDMA) AND NDMA PRECURSORS IN MUNICIPAL WASTEWATER TREATMENT PLANTS. Proceedings of the Water Environment Federation, 2004, 2004, 31-46.                         | 0.0 | 1         |
| 137 | A N-Nitrosodimethylamine (NDMA) precursor analysis for chlorination of water and wastewater.<br>Water Research, 2003, 37, 3733-3741.                                                                      | 5.3 | 257       |
| 138 | N-Nitrosodimethylamine (NDMA) as a Drinking Water Contaminant: A Review. Environmental Engineering Science, 2003, 20, 389-404.                                                                            | 0.8 | 571       |
| 139 | Formation ofN-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination.<br>Environmental Science & Technology, 2002, 36, 588-595.                                                               | 4.6 | 517       |