

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4749325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An inactivated vaccine based on artificial non-pathogenic fowl adenovirus 4 protects chickens against hepatitis-hydropericardium syndrome. Veterinary Microbiology, 2022, 264, 109285.	0.8	5
2	Identification of Chicken CD44 as a Novel B Lymphocyte Receptor for Infectious Bursal Disease Virus. Journal of Virology, 2022, 96, jvi0011322.	1.5	6
3	A novel inactivated bivalent vaccine for chickens against emerging hepatitis-hydropericardium syndrome and infectious bursal disease. Veterinary Microbiology, 2022, 266, 109375.	0.8	4
4	Stromal Interaction Molecule 1 Promotes the Replication of vvIBDV by Mobilizing Ca2+ in the ER. Viruses, 2022, 14, 1524.	1.5	2
5	Development of a Viral-Like Particle Candidate Vaccine Against Novel Variant Infectious Bursal Disease Virus. Vaccines, 2021, 9, 142.	2.1	8
6	An improved scheme for infectious bursal disease virus genotype classification based on both genome-segments A and B. Journal of Integrative Agriculture, 2021, 20, 1372-1381.	1.7	23
7	Genomic sequences and pathogenic characteristics of two variant duck reoviruses associated with spleen necrosis. Infection, Genetics and Evolution, 2021, 92, 104847.	1.0	7
8	A Single Amino Acid at Residue 188 of the Hexon Protein Is Responsible for the Pathogenicity of the Emerging Novel Virus Fowl Adenovirus 4. Journal of Virology, 2021, 95, e0060321.	1.5	25
9	Identification and Pathogenicity Evaluation of a Novel Reassortant Infectious Bursal Disease Virus (Genotype A2dB3). Viruses, 2021, 13, 1682.	1.5	16
10	Naturally occurring mutated infectious bursal disease virus of genotype A8B1 associated with bursa damage in China. Virus Research, 2021, 302, 198498.	1.1	6
11	TRIM25 inhibits infectious bursal disease virus replication by targeting VP3 for ubiquitination and degradation. PLoS Pathogens, 2021, 17, e1009900.	2.1	29
12	Recombinant Avian β-Defensin Produced by Food-Grade Lactococcus as a Novel and Potent Immunological Enhancer Adjuvant for Avian Vaccine. Probiotics and Antimicrobial Proteins, 2021, 13, 1833-1846.	1.9	2
13	Molecular characteristic and pathogenicity analysis of a novel multiple recombinant ALV-K strain. Veterinary Microbiology, 2021, 260, 109184.	0.8	11
14	Immunogenicity of Novel Live Vaccine Based on an Artificial rHN20 Strain against Emerging Fowl Adenovirus 4. Viruses, 2021, 13, 2153.	1.5	11
15	The Evasion of Antiviral Innate Immunity by Chicken DNA Viruses. Frontiers in Microbiology, 2021, 12, 771292.	1.5	2
16	Genotyping and Molecular Characterization of Infectious Bursal Disease Virus Identified in Important Poultry-Raising Areas of China During 2019 and 2020. Frontiers in Veterinary Science, 2021, 8, 759861.	0.9	15
17	Development of a Novel Avian Vaccine Vector Derived From the Emerging Fowl Adenovirus 4. Frontiers in Microbiology, 2021, 12, 780978.	1.5	11
18	Recombinant Duck Enteritis Virus-Vectored Bivalent Vaccine Effectively Protects Against Duck Hepatitis A Virus Infection in Ducks. Frontiers in Microbiology, 2021, 12, 813010.	1.5	4

#	Article	IF	CITATIONS
19	Natural co-infection with two virulent wild strains of Marek's disease virus in a commercial layer flock. Veterinary Microbiology, 2020, 240, 108501.	0.8	3
20	ldentification of Chicken CD74 as a Novel Cellular Attachment Receptor for Infectious Bursal Disease Virus in Bursa B Lymphocytes. Journal of Virology, 2020, 94, .	1.5	11
21	Development and evaluation of a gp85 protein-based subgroup-specific indirect enzyme-linked immunosorbent assay for the detection of anti-subgroup J avian leukosis virus antibodies. Applied Microbiology and Biotechnology, 2020, 104, 1785-1793.	1.7	4
22	Development and application of a novel ELISA for detecting antibodies against group I fowl adenoviruses. Applied Microbiology and Biotechnology, 2020, 104, 853-859.	1.7	7
23	Novel variants of infectious bursal disease virus can severely damage the bursa of fabricius of immunized chickens. Veterinary Microbiology, 2020, 240, 108507.	0.8	50
24	Novel variant infectious bursal disease virus suppresses Newcastle disease vaccination in broiler and layer chickens. Poultry Science, 2020, 99, 6542-6548.	1.5	15
25	A reassortment vaccine candidate of the novel variant infectious bursal disease virus. Veterinary Microbiology, 2020, 251, 108905.	0.8	14
26	The Bipartite Sequence Motif in the N and C Termini of gp85 of Subgroup J Avian Leukosis Virus Plays a Crucial Role in Receptor Binding and Viral Entry. Journal of Virology, 2020, 94, .	1.5	13
27	Novel Inactivated Subtype B Avian Metapneumovirus Vaccine Induced Humoral and Cellular Immune Responses. Vaccines, 2020, 8, 762.	2.1	6
28	Recombinant Lactococcus Expressing a Novel Variant of Infectious Bursal Disease Virus VP2 Protein Can Induce Unique Specific Neutralizing Antibodies in Chickens and Provide Complete Protection. Viruses, 2020, 12, 1350.	1.5	6
29	Molecular characterization of avian leukosis virus subgroup J in Chinese local chickens between 2013 and 2018. Poultry Science, 2020, 99, 5286-5296.	1.5	13
30	Prevention of Avian Retrovirus Infection in Chickens Using CRISPR-Cas9 Delivered by Marek's Disease Virus. Molecular Therapy - Nucleic Acids, 2020, 21, 343-353.	2.3	5
31	Identification of chicken CAR homology as a cellular receptor for the emerging highly pathogenic fowl adenovirus 4 via unique binding mechanism. Emerging Microbes and Infections, 2020, 9, 586-596.	3.0	27
32	Isolation and molecular characterization of the first subgroup J avian leukosis virus from chicken in Pakistan. Infection, Genetics and Evolution, 2020, 85, 104425.	1.0	2
33	Chicken eEF1α is a Critical Factor for the Polymerase Complex Activity of Very Virulent Infectious Bursal Disease Virus. Viruses, 2020, 12, 249.	1.5	3
34	Marek's disease virus as a CRISPR/Cas9 delivery system to defend against avian leukosis virus infection in chickens. Veterinary Microbiology, 2020, 242, 108589.	0.8	5
35	Naturally occurring homologous recombination between novel variant infectious bursal disease virus and intermediate vaccine strain. Veterinary Microbiology, 2020, 245, 108700.	0.8	19
36	Naturally occurring cell-adapted classic strain of infectious bursal disease virus. Veterinary Microbiology, 2020, 243, 108620.	0.8	4

#	Article	IF	CITATIONS
37	MiR-125b Suppression Inhibits Apoptosis and Negatively Regulates Sema4D in Avian Leukosis Virus-Transformed Cells. Viruses, 2019, 11, 728.	1.5	10
38	Macrophage Migration Inhibitory Factor Triggers Inflammatory Responses During Very Virulent Infectious Bursal Disease Virus Infection. Frontiers in Microbiology, 2019, 10, 2225.	1.5	13
39	Avian oncogenic herpesvirus antagonizes the cGAS-STING DNA-sensing pathway to mediate immune evasion. PLoS Pathogens, 2019, 15, e1007999.	2.1	51
40	Novel variant strains of infectious bursal disease virus isolated in China. Veterinary Microbiology, 2019, 230, 212-220.	0.8	77
41	Marek's Disease Virus RLORF4 Inhibits Type I Interferon Production by Antagonizing NF-κB Activation. Journal of Virology, 2019, 93, .	1.5	17
42	Differential expression of type I interferon mRNA and protein levels induced by virulent Marek's disease virus infection in chickens. Veterinary Immunology and Immunopathology, 2019, 212, 15-22.	0.5	12
43	Pathogenic Characterization and Full Length Genome Sequence of a Reassortant Infectious Bursal Disease Virus Newly Isolated in Pakistan. Virologica Sinica, 2019, 34, 102-105.	1.2	16
44	Neutralizing-antibody-mediated protection of chickens against infectious bursal disease via one-time vaccination with inactivated recombinant Lactococcus lactis expressing a fusion protein constructed from the RCK protein of Salmonella enterica and VP2 of infectious bursal disease virus. Microbial Cell Factories, 2019, 18, 21.	1.9	9
45	Genomic sequence and pathogenicity of the first avian metapneumovirus subtype B isolated from chicken in China. Veterinary Microbiology, 2019, 228, 32-38.	0.8	15
46	Development and application of a colloidal gold test strip for detection of avian leukosis virus. Applied Microbiology and Biotechnology, 2019, 103, 427-435.	1.7	14
47	Inhibition of DNA-Sensing Pathway by Marek's Disease Virus VP23 Protein through Suppression of Interferon Regulatory Factor 7 Activation. Journal of Virology, 2019, 93, .	1.5	37
48	Recombinant Lactococcus lactis co-expressing OmpH of an M cell-targeting ligand and IBDV-VP2 protein provide immunological protection in chickens. Vaccine, 2018, 36, 729-735.	1.7	30
49	Residues 28 to 39 of the Extracellular Loop 1 of Chicken Na + /H + Exchanger Type I Mediate Cell Binding and Entry of Subgroup J Avian Leukosis Virus. Journal of Virology, 2018, 92, .	1.5	24
50	N-terminal domain of the RNA polymerase of very virulent infectious bursal disease virus contributes to viral replication and virulence. Science China Life Sciences, 2018, 61, 1127-1129.	2.3	6
51	Avian leukosis virus subgroup J promotes cell proliferation and cell cycle progression through miR-221 by targeting CDKN1B. Virology, 2018, 519, 121-130.	1.1	16
52	Genetic evolution of Gallid herpesvirus 2 isolated in China. Infection, Genetics and Evolution, 2017, 51, 263-274.	1.0	17
53	Comparison of different sites in recombinant Marek's disease virus for the expression of green fluorescent protein. Virus Research, 2017, 235, 82-85.	1.1	5
54	Evaluation of two strains of Marek's disease virus serotype 1 for the development of recombinant vaccines against very virulent infectious bursal disease virus. Antiviral Research, 2017, 139, 153-160.	1.9	4

#	Article	IF	CITATIONS
55	Eukaryotic translational initiation factor 4AII reduces the replication of infectious bursal disease virus by inhibiting VP1 polymerase activity. Antiviral Research, 2017, 139, 102-111.	1.9	9
56	Voltage-Dependent Anion Channel 1 Interacts with Ribonucleoprotein Complexes To Enhance Infectious Bursal Disease Virus Polymerase Activity. Journal of Virology, 2017, 91, .	1.5	20
57	Protective efficacy of a novel recombinant Marek's disease virus vector vaccine against infectious bursal disease in chickens with or without maternal antibodies. Veterinary Immunology and Immunopathology, 2017, 186, 55-59.	0.5	6
58	Infectious Bursal Disease Virus Subverts Autophagic Vacuoles To Promote Viral Maturation and Release. Journal of Virology, 2017, 91, .	1.5	20
59	The down-regulation of casein kinase 1 alpha as a host defense response against infectious bursal disease virus infection. Virology, 2017, 512, 211-221.	1.1	9
60	C-terminal region of apoptin affects chicken anemia virus replication and virulence. Virology Journal, 2017, 14, 38.	1.4	10
61	A Chinese Variant Marek's Disease Virus Strain with Divergence between Virulence and Vaccine Resistance. Viruses, 2017, 9, 71.	1.5	24
62	Co-Infection with Marek's Disease Virus and Reticuloendotheliosis Virus Increases Illness Severity and Reduces Marek's Disease Vaccine Efficacy. Viruses, 2017, 9, 158.	1.5	30
63	Recombinant Marek's Disease Virus as a Vector-Based Vaccine against Avian Leukosis Virus Subgroup J in Chicken. Viruses, 2016, 8, 301.	1.5	13
64	Recombinant Marek's disease virus type 1 provides full protection against very virulent Marek's and infectious bursal disease viruses in chickens. Scientific Reports, 2016, 6, 39263.	1.6	20
65	TMPRSS12 Is an Activating Protease for Subtype B Avian Metapneumovirus. Journal of Virology, 2016, 90, 11231-11246.	1.5	15
66	Effects of different promoters on the protective efficacy of recombinant Marek's disease virus type 1 expressing the VP2 gene of infectious bursal disease virus. Vaccine, 2016, 34, 5744-5750.	1.7	10
67	Genetic and pathogenic characterisation of 11 avian reovirus isolates from northern China suggests continued evolution of virulence. Scientific Reports, 2016, 6, 35271.	1.6	29
68	Integrin αvβ1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection. Journal of Biological Chemistry, 2016, 291, 14815-14825.	1.6	8
69	A single mutation in the PBC loop of VP2 is involved in the in vitro replication of infectious bursal disease virus. Science China Life Sciences, 2016, 59, 717-723.	2.3	17
70	Molecular and pathogenicity characterization of Gallid herpesvirus 2 newly isolated in China from 2009 to 2013. Virus Genes, 2016, 52, 51-60.	0.7	16
71	Ribosomal protein L4 interacts with viral protein VP3 and regulates the replication of infectious bursal disease virus. Virus Research, 2016, 211, 73-78.	1.1	17
72	Trypsin- and low pH-mediated fusogenicity of avian metapneumovirus fusion proteins is determined by residues at positions 100, 101 and 294. Scientific Reports, 2015, 5, 15584.	1.6	12

#	Article	IF	CITATIONS
73	Cyclophilin A Interacts with Viral VP4 and Inhibits the Replication of Infectious Bursal Disease Virus. BioMed Research International, 2015, 2015, 1-10.	0.9	10
74	Naturally occurring reassortant infectious bursal disease virus in northern China. Virus Research, 2015, 203, 92-95.	1.1	36
75	Chondroitin Sulfate N-acetylgalactosaminyltransferase-2 Contributes to the Replication of Infectious Bursal Disease Virus via Interaction with the Capsid Protein VP2. Viruses, 2015, 7, 1474-1491.	1.5	7
76	Triplet amino acids located at positions 145/146/147 of the RNA polymerase of very virulent infectious bursal disease virus contribute to viral virulence. Journal of General Virology, 2014, 95, 888-897.	1.3	38
77	Recombinant infectious bursal disease virus expressing Newcastle disease virus (NDV) neutralizing epitope confers partial protection against virulent NDV challenge in chickens. Antiviral Research, 2014, 101, 1-11.	1.9	10
78	A reassortment vaccine candidate as the improved formulation to induce protection against very virulent infectious bursal disease virus. Vaccine, 2014, 32, 1436-1443.	1.7	5
79	Development of a tailored vaccine against challenge with very virulent infectious bursal disease virus of chickens using reverse genetics. Vaccine, 2011, 29, 5550-5557.	1.7	14