
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4749088/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimized mouse model of embolic MCAO: From cerebral blood flow to neurological outcomes. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 495-509.	2.4	21
2	Intranasal Salvinorin A Improves Long-term Neurological Function via Immunomodulation in a Mouse Ischemic Stroke Model. Journal of NeuroImmune Pharmacology, 2022, 17, 350-366.	2.1	4
3	Neuroprotective Effects of TRPM7 Deletion in Parvalbumin GABAergic vs. Glutamatergic Neurons following Ischemia. Cells, 2022, 11, 1178.	1.8	6
4	lrisin ameliorates neuroinflammation and neuronal apoptosis through integrin αVβ5/AMPK signaling pathway after intracerebral hemorrhage in mice. Journal of Neuroinflammation, 2022, 19, 82.	3.1	43
5	Interleukin 13 promotes long-term recovery after ischemic stroke by inhibiting the activation of STAT3. Journal of Neuroinflammation, 2022, 19, 112.	3.1	22
6	INT-777 prevents cognitive impairment by activating Takeda G protein-coupled receptor 5 (TGR5) and attenuating neuroinflammation via cAMP/ PKA/ CREB signaling axis in a rat model of sepsis. Experimental Neurology, 2021, 335, 113504.	2.0	44
7	Neuroprotection against cerebral ischemia/reperfusion by dietary phytochemical extracts from Tibetan turnip (Brassica rapa L.). Journal of Ethnopharmacology, 2021, 265, 113410.	2.0	12
8	Change and predictive ability of circulating immunoregulatory lymphocytes in long-term outcomes of acute ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2280-2294.	2.4	33
9	Central nervous system diseases related to pathological microglial phagocytosis. CNS Neuroscience and Therapeutics, 2021, 27, 528-539.	1.9	27
10	Three-dimensional remodeling of functional cerebrovascular architecture and gliovascular unit in leptin receptor-deficient mice. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1547-1562.	2.4	9
11	Cordycepin confers long-term neuroprotection via inhibiting neutrophil infiltration and neuroinflammation after traumatic brain injury. Journal of Neuroinflammation, 2021, 18, 137.	3.1	42
12	Ethyl pyruvate improves white matter remodeling in rats after traumatic brain injury. CNS Neuroscience and Therapeutics, 2021, 27, 113-122.	1.9	16
13	The blood brain barrier in cerebral ischemic injury – Disruption and repair. Brain Hemorrhages, 2020, 1, 34-53.	0.4	51
14	Demyelinating processes in aging and stroke in the central nervous system and the prospect of treatment strategy. CNS Neuroscience and Therapeutics, 2020, 26, 1219-1229.	1.9	29
15	IL-13 Ameliorates Neuroinflammation and Promotes Functional Recovery after Traumatic Brain Injury. Journal of Immunology, 2020, 204, 1486-1498.	0.4	41
16	Preconditioning with partial caloric restriction confers long-term protection against grey and white matter injury after transient focal ischemia. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1394-1409.	2.4	42
17	The effect of age-related risk factors and comorbidities on white matter injury and repair after ischemic stroke. Neurobiology of Disease, 2019, 126, 13-22.	2.1	14
18	Hypoxic preconditioning improves longâ€ŧerm functional outcomes after neonatal hypoxia–ischemic injury by restoring white matter integrity and brain development. CNS Neuroscience and Therapeutics, 2019, 25, 734-747.	1.9	17

#	Article	IF	CITATIONS
19	The interleukin-4/PPARÎ ³ signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury. PLoS Biology, 2019, 17, e3000330.	2.6	95
20	Distinctive functional deficiencies in axonal conduction associated with two forms of cerebral white matter injury. CNS Neuroscience and Therapeutics, 2019, 25, 1018-1029.	1.9	10
21	Protective effects of sulforaphane in experimental vascular cognitive impairment: Contribution of the Nrf2 pathway. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 352-366.	2.4	66
22	Fatty acid transporting proteins: Roles in brain development, aging, and stroke. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 136, 35-45.	1.0	46
23	Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Progress in Neurobiology, 2018, 163-164, 27-58.	2.8	156
24	Endothelium-targeted overexpression of heat shock protein 27 ameliorates blood–brain barrier disruption after ischemic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1243-E1252.	3.3	119
25	Inhibition of Na + -K + -2Cl â^ cotransporter attenuates blood-brain-barrier disruption in a mouse model of traumatic brain injury. Neurochemistry International, 2017, 111, 23-31.	1.9	47
26	Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke. Brain, 2017, 140, 1914-1931.	3.7	146
27	DRα1-MOG-35-55 Reduces Permanent Ischemic Brain Injury. Translational Stroke Research, 2017, 8, 284-293.	2.3	25
28	Fast free-of-acrylamide clearing tissue (FACT)—an optimized new protocol for rapid, high-resolution imaging of three-dimensional brain tissue. Scientific Reports, 2017, 7, 9895.	1.6	39
29	Promoting Neurovascular Recovery in Aged Mice after Ischemic Stroke - Prophylactic Effect of Omega-3 Polyunsaturated Fatty Acids. , 2017, 8, 531.		39
30	Microglia: A Double-Sided Sword in Stroke. Springer Series in Translational Stroke Research, 2016, , 133-150.	0.1	0
31	A Post-stroke Therapeutic Regimen with Omega-3 Polyunsaturated Fatty Acids that Promotes White Matter Integrity and Beneficial Microglial Responses after Cerebral Ischemia. Translational Stroke Research, 2016, 7, 548-561.	2.3	70
32	Delayed Docosahexaenoic Acid Treatment Combined with Dietary Supplementation of Omega-3 Fatty Acids Promotes Long-Term Neurovascular Restoration After Ischemic Stroke. Translational Stroke Research, 2016, 7, 521-534.	2.3	34
33	Severity-Dependent Long-Term Spatial Learning-Memory Impairment in a Mouse Model of Traumatic Brain Injury. Translational Stroke Research, 2016, 7, 512-520.	2.3	34
34	APE1/Ref-1 facilitates recovery of gray and white matter and neurological function after mild stroke injury. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3558-67.	3.3	42
35	Omega-3 polyunsaturated fatty acids mitigate blood–brain barrier disruption after hypoxic–ischemic brain injury. Neurobiology of Disease, 2016, 91, 37-46.	2.1	70
36	Interleukin-4 Is Essential for Microglia/Macrophage M2 Polarization and Long-Term Recovery After Cerebral Ischemia. Stroke, 2016, 47, 498-504.	1.0	300

#	Article	IF	CITATIONS
37	Sevoflurane Preconditioning Confers Neuroprotection via Anti-apoptosis Effects. Acta Neurochirurgica Supplementum, 2016, 121, 55-61.	0.5	26
38	Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke. Medical Gas Research, 2016, 6, 194.	1.2	21
39	Apurinic/Apyrimidinic Endonuclease 1 Upregulation Reduces Oxidative DNA Damage and Protects Hippocampal Neurons from Ischemic Injury. Antioxidants and Redox Signaling, 2015, 22, 135-148.	2.5	31
40	Ethyl Pyruvate Protects against Blood–Brain Barrier Damage and Improves Longâ€ŧerm Neurological Outcomes in a Rat Model of Traumatic Brain Injury. CNS Neuroscience and Therapeutics, 2015, 21, 374-384.	1.9	45
41	HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the CSK312/PTEN/Akt axis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2853-2858.	3.3	303
42	Dietary supplementation with omega-3 polyunsaturated fatty acids robustly promotes neurovascular restorative dynamics and improves neurological functions after stroke. Experimental Neurology, 2015, 272, 170-180.	2.0	44
43	Demyelination as a rational therapeutic target for ischemic or traumatic brain injury. Experimental Neurology, 2015, 272, 17-25.	2.0	118
44	White matter injury and microglia/macrophage polarization are strongly linked with age-related long-term deficits in neurological function after stroke. Experimental Neurology, 2015, 272, 109-119.	2.0	150
45	<i>n</i> -3 Polyunsaturated Fatty Acids Reduce Neonatal Hypoxic/Ischemic Brain Injury by Promoting Phosphatidylserine Formation and Akt Signaling. Stroke, 2015, 46, 2943-2950.	1.0	58
46	Microglial and macrophage polarization—new prospects for brain repair. Nature Reviews Neurology, 2015, 11, 56-64.	4.9	1,093
47	Essential Role of Program Death 1-Ligand 1 in Regulatory T-Cell–Afforded Protection Against Blood–Brain Barrier Damage After Stroke. Stroke, 2014, 45, 857-864.	1.0	106
48	Neuronal NAMPT is Released after Cerebral Ischemia and Protects against White Matter Injury. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1613-1621.	2.4	52
49	Omega-3 Fatty Acids Protect the Brain against Ischemic Injury by Activating Nrf2 and Upregulating Heme Oxygenase 1. Journal of Neuroscience, 2014, 34, 1903-1915.	1.7	156
50	Omega-3 polyunsaturated fatty acids enhance cerebral angiogenesis and provide long-term protection after stroke. Neurobiology of Disease, 2014, 68, 91-103.	2.1	78
51	Preconditioning provides neuroprotection in models of CNS disease: Paradigms and clinical significance. Progress in Neurobiology, 2014, 114, 58-83.	2.8	164
52	Molecular dialogs between the ischemic brain and the peripheral immune system: Dualistic roles in injury and repair. Progress in Neurobiology, 2014, 115, 6-24.	2.8	168
53	Neurobiology of microglial action in CNS injuries: Receptor-mediated signaling mechanisms and functional roles. Progress in Neurobiology, 2014, 119-120, 60-84.	2.8	108
54	Adoptive regulatory Tâ€cell therapy protects against cerebral ischemia. Annals of Neurology, 2013, 74, 458-471.	2.8	246

#	Article	IF	CITATIONS
55	Microglia/Macrophage Polarization Dynamics in White Matter after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1864-1874.	2.4	387
56	Omega-3 Polyunsaturated Fatty Acid Supplementation Improves Neurologic Recovery and Attenuates White Matter Injury after Experimental Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1474-1484.	2.4	94
57	Scriptaid, a Novel Histone Deacetylase Inhibitor, Protects Against Traumatic Brain Injury via Modulation of PTEN and AKT Pathway. Neurotherapeutics, 2013, 10, 124-142.	2.1	88
58	The Dynamics of the Mitochondrial Organelle as a Potential Therapeutic Target. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 22-32.	2.4	97
59	Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Progress in Neurobiology, 2013, 100, 30-47.	2.8	491
60	HSP27 Protects the Blood-Brain Barrier Against Ischemia-Induced Loss of Integrity. CNS and Neurological Disorders - Drug Targets, 2013, 12, 325-337.	0.8	29
61	Transgenic Overproduction of Omega-3 Polyunsaturated Fatty Acids Provides Neuroprotection and Enhances Endogenous Neurogenesis After Stroke. Current Molecular Medicine, 2013, 13, 1465-1473.	0.6	30
62	Drug-Induced Hypothermia in Stroke Models: Does it Always Protect?. CNS and Neurological Disorders - Drug Targets, 2013, 12, 371-380.	0.8	37
63	miR-15b Suppression of Bcl-2 Contributes to Cerebral Ischemic Injury and is Reversed by Sevoflurane Preconditioning. CNS and Neurological Disorders - Drug Targets, 2013, 12, 381-391.	0.8	49
64	Delivery of Neurotherapeutics Across the Blood Brain Barrier in Stroke. Current Pharmaceutical Design, 2012, 18, 3704-3720.	0.9	10
65	Microglia/Macrophage Polarization Dynamics Reveal Novel Mechanism of Injury Expansion After Focal Cerebral Ischemia. Stroke, 2012, 43, 3063-3070.	1.0	1,239
66	Pharmacological Induction of Heme Oxygenase-1 by a Triterpenoid Protects Neurons Against Ischemic Injury. Stroke, 2012, 43, 1390-1397.	1.0	80
67	Mutant Erythropoietin Without Erythropoietic Activity Is Neuroprotective Against Ischemic Brain Injury. Stroke, 2012, 43, 3071-3077.	1.0	30
68	Mitochondrial biogenesis contributes to ischemic neuroprotection afforded by <scp>LPS</scp> preâ€conditioning. Journal of Neurochemistry, 2012, 123, 125-137.	2.1	39
69	Assessment of Angiogenesis in Models of Focal Cerebral Ischemia. Springer Protocols, 2012, , 181-185.	0.1	0
70	Transgenic Overexpression of Peroxiredoxin-2 Attenuates Ischemic Neuronal Injury <i>Via</i> Suppression of a Redox-Sensitive Pro-Death Signaling Pathway. Antioxidants and Redox Signaling, 2012, 17, 719-732.	2.5	72
71	Very early-initiated physical rehabilitation protects against ischemic brain injury. Frontiers in Bioscience - Elite, 2012, E4, 2476-2489.	0.9	37
72	Focal cerebral ischemia activates neurovascular restorative dynamics in mouse brain. Frontiers in Bioscience - Elite, 2012, E4, 1926.	0.9	27

#	Article	IF	CITATIONS
73	Phosphorylation of HSP27 by Protein Kinase D Is Essential for Mediating Neuroprotection against Ischemic Neuronal Injury. Journal of Neuroscience, 2012, 32, 2667-2682.	1.7	88
74	Focal cerebral ischemia activates neurovascular restorative dynamics in mouse brain. Frontiers in Bioscience - Elite, 2012, E4, 1926-1936.	0.9	34
75	GSTP1 a novel downstream regulator of LRRK2 G2019S-induced neuronal cell death. Frontiers in Bioscience - Elite, 2012, E4, 2365-2377.	0.9	6
76	Protective effects and mechanisms of sirtuins in the nervous system. Progress in Neurobiology, 2011, 95, 373-395.	2.8	178
77	Omega-3 polyunsaturated fatty acids in the brain: metabolism and neuroprotection. Frontiers in Bioscience - Landmark, 2011, 16, 2653.	3.0	78
78	Sevoflurane preconditioning confers neuroprotection via anti-inflammatory effects. Frontiers in Bioscience - Elite, 2011, E3, 604-615.	0.9	47
79	Free-Radical Scavenger Edaravone Treatment Confers Neuroprotection Against Traumatic Brain Injury in Rats. Journal of Neurotrauma, 2011, 28, 2123-2134.	1.7	97
80	Clinical study on the effect of electroacupuncture on cellular immune function in patients with gastrointestinal tumor. Journal of Acupuncture and Tuina Science, 2011, 9, 354-358.	0.1	1
81	Mechanistic Insight into DNA Damage and Repair in Ischemic Stroke: Exploiting the Base Excision Repair Pathway as a Model of Neuroprotection. Antioxidants and Redox Signaling, 2011, 14, 1905-1918.	2.5	49
82	Peroxiredoxin-2 Protects against 6-Hydroxydopamine-Induced Dopaminergic Neurodegeneration via Attenuation of the Apoptosis Signal-Regulating Kinase (ASK1) Signaling Cascade. Journal of Neuroscience, 2011, 31, 247-261.	1.7	136
83	lschemia-induced calpain activation causes eukaryotic (translation) initiation factor 4G1 (elF4GI) degradation, protein synthesis inhibition, and neuronal death. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18102-18107.	3.3	29
84	Sevoflurane preconditioning protects blood-brain-barrier against brain ischemia. Frontiers in Bioscience - Elite, 2011, E3, 978-988.	0.9	23
85	Ethyl pyruvate protects against hypoxic-ischemic brain injury via anti-cell death and anti-inflammatory mechanisms. Neurobiology of Disease, 2010, 37, 711-722.	2.1	76
86	Autophagy and protein aggregation after brain ischemia. Journal of Neurochemistry, 2010, 115, 68-78.	2.1	113
87	Mechanisms of microRNA-mediated regulation of angiogenesis. Frontiers in Bioscience - Elite, 2010, E2, 1304-1319.	0.9	6
88	Neuroprotection Against Hypoxic-Ischemic Brain Injury by Inhibiting the Apoptotic Protease Activating Factor-1 Pathway. Stroke, 2010, 41, 166-172.	1.0	40
89	Activation of Microglia Depends on Na ⁺ /H ⁺ Exchange-Mediated H ⁺ Homeostasis. Journal of Neuroscience, 2010, 30, 15210-15220.	1.7	82
90	Apurinic/apyrimidinic endonuclease APE1 is required for PACAP-induced neuroprotection against global cerebral ischemia. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3204-3209.	3.3	76

#	Article	IF	CITATIONS
91	Omega-3 Polyunsaturated Fatty Acid Supplementation Confers Long-Term Neuroprotection Against Neonatal Hypoxic–Ischemic Brain Injury Through Anti-Inflammatory Actions. Stroke, 2010, 41, 2341-2347.	1.0	108
92	Enhanced Oligodendrogenesis and Recovery of Neurological Function by Erythropoietin After Neonatal Hypoxic/Ischemic Brain Injury. Stroke, 2010, 41, 1032-1037.	1.0	192
93	Heat shock proteins: Cellular and molecular mechanisms in the central nervous system. Progress in Neurobiology, 2010, 92, 184-211.	2.8	240
94	Neuroprotections and mechanisms of inhalational anesthetics against brain ischemia. Frontiers in Bioscience - Elite, 2010, E2, 1275-1298.	0.9	12
95	Calcium dysregulation induces apoptosis-inducing factor release: Cross-talk between PARP-1- and calpain- signaling pathways. Experimental Neurology, 2009, 218, 213-220.	2.0	87
96	HSP27: Mechanisms of Cellular Protection Against Neuronal Injury. Current Molecular Medicine, 2009, 9, 863-872.	0.6	120
97	Expression of Cbl-interacting protein of 85 kDa in MPTP mouse model of Parkinson's disease and 1-methyl-4-phenyl-pyridinium ion-treated dopaminergic SH-SY5Y cells. Acta Biochimica Et Biophysica Sinica, 2008, 40, 505-512.	0.9	20
98	Leptin neuroprotection in the CNS: mechanisms and therapeutic potentials. Journal of Neurochemistry, 2008, 106, 1977-1990.	2.1	136
99	Rapidly Increased Neuronal Mitochondrial Biogenesis After Hypoxic-Ischemic Brain Injury. Stroke, 2008, 39, 3057-3063.	1.0	195
100	Hsp27 Protects against Ischemic Brain Injury via Attenuation of a Novel Stress-Response Cascade Upstream of Mitochondrial Cell Death Signaling. Journal of Neuroscience, 2008, 28, 13038-13055.	1.7	130
101	Cellular NAD Replenishment Confers Marked Neuroprotection Against Ischemic Cell Death. Stroke, 2008, 39, 2587-2595.	1.0	115
102	Preconditioning Suppresses Inflammation in Neonatal Hypoxic Ischemia Via Akt Activation. Stroke, 2007, 38, 1017-1024.	1.0	101
103	Critical Role of Calpain I in Mitochondrial Release of Apoptosis-Inducing Factor in Ischemic Neuronal Injury. Journal of Neuroscience, 2007, 27, 9278-9293.	1.7	274
104	Leptin Protects against 6-Hydroxydopamine-induced Dopaminergic Cell Death via Mitogen-activated Protein Kinase Signaling. Journal of Biological Chemistry, 2007, 282, 34479-34491.	1.6	145
105	Signal transducers and activators of transcription 5 contributes to erythropoietin-mediated neuroprotection against hippocampal neuronal death after transient global cerebral ischemia. Neurobiology of Disease, 2007, 25, 45-53.	2.1	65
106	Neuroprotection against Focal Ischemic Brain Injury by Inhibition of c-Jun N-Terminal Kinase and Attenuation of the Mitochondrial Apoptosis-Signaling Pathway. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 694-712.	2.4	214
107	Melatonin protects against MPTP/MPP+-induced mitochondrial DNA oxidative damage in vivo and in vitro. Journal of Pineal Research, 2005, 39, 34-42.	3.4	83