
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4749056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Palladium-Catalyzed Multicomponent Coupling of Alkynes, Imines, and Acid Chlorides:Â A Direct and Modular Approach to Pyrrole Synthesis. Journal of the American Chemical Society, 2004, 126, 468-469.	13.7	201
2	A dual light-driven palladium catalyst: Breaking the barriers in carbonylation reactions. Science, 2020, 368, 318-323.	12.6	185
3	A Novel Example of Chiral Counteranion Induced Enantioselective Metal Catalysis:  The Importance of Ion-Pairing in Copper-Catalyzed Olefin Aziridination and Cyclopropanation. Organic Letters, 2000, 2, 4165-4168.	4.6	174
4	A Palladium-Catalyzed Carbonylation Approach to Acid Chloride Synthesis. Journal of the American Chemical Society, 2013, 135, 16841-16844.	13.7	144
5	A Direct, One Step Synthesis of Imidazoles from Imines and Acid Chlorides:Â A Palladium Catalyzed Multicomponent Coupling Approach. Journal of the American Chemical Society, 2006, 128, 6050-6051.	13.7	138
6	Copper-Catalyzed Coupling of Pyridines and Quinolines with Alkynes:  A One-Step, Asymmetric Route to Functionalized Heterocycles. Journal of Organic Chemistry, 2008, 73, 1906-1910.	3.2	138
7	A New Use of Wittig-Type Reagents as 1,3-Dipolar Cycloaddition Precursors and in Pyrrole Synthesis. Journal of the American Chemical Society, 2007, 129, 12366-12367.	13.7	137
8	Metalâ€Catalyzed Oneâ€Step Synthesis: Towards Direct Alternatives to Multistep Heterocycle and Amino Acid Derivative Formation. Chemistry - A European Journal, 2009, 15, 302-313.	3.3	130
9	Copper-Catalyzed Coupling of Imines, Acid Chlorides, and Alkynes:  A Multicomponent Route to Propargylamides. Organic Letters, 2004, 6, 1107-1110.	4.6	121
10	Palladium Catalyzed Synthesis of Münchnones from αâ€Amidoethers: A Mild Route to Pyrroles. Angewandte Chemie - International Edition, 2008, 47, 5430-5433.	13.8	120
11	A TEMPOâ€Free Copperâ€Catalyzed Aerobic Oxidation of Alcohols. Angewandte Chemie - International Edition, 2015, 54, 4208-4211.	13.8	115
12	The Development of a Catalytic Synthesis of Münchnones:  A Simple Four-Component Coupling Approach to α-Amino Acid Derivatives. Journal of the American Chemical Society, 2003, 125, 1474-1475.	13.7	111
13	The Use of Carbon Monoxide and Imines as Peptide Derivative Synthons: A Facile Palladium-Catalyzed Synthesis ofα-Amino Acid Derived Imidazolines. Angewandte Chemie - International Edition, 2001, 40, 3228-3230.	13.8	85
14	Functional Group Transposition: A Palladium-Catalyzed Metathesis of Ar–X σ-Bonds and Acid Chloride Synthesis. Journal of the American Chemical Society, 2018, 140, 10140-10144.	13.7	81
15	A Direct Phosphine-Mediated Synthesis of Pyrroles from Acid Chlorides and α,β-Unsaturated Imines. Organic Letters, 2009, 11, 1369-1372.	4.6	80
16	A general approach to intermolecular carbonylation of arene C–H bonds to ketones through catalytic aroyl triflate formation. Nature Chemistry, 2018, 10, 193-199.	13.6	77
17	Direct, Palladium-Catalyzed, Multicomponent Synthesis of β-Lactams from Imines, Acid Chloride, and Carbon Monoxide. Organic Letters, 2006, 8, 3927-3930.	4.6	76
18	From Aryl Iodides to 1,3-Dipoles: Design and Mechanism of a Palladium Catalyzed Multicomponent Synthesis of Pyrroles. Journal of the American Chemical Society, 2016, 138, 7315-7324.	13.7	67

#	Article	IF	CITATIONS
19	Metal-Free, Multicomponent Synthesis of Pyrrole-Based π-Conjugated Polymers from Imines, Acid Chlorides, and Alkynes. Journal of the American Chemical Society, 2016, 138, 10516-10521.	13.7	67
20	The Novel Insertion of Imines into a Late-Metalâ^'Carbon σ-Bond: Developing a Palladium-Mediated Route to Polypeptides. Organometallics, 1998, 17, 4-6.	2.3	64
21	Hornerâ^'Wadsworthâ^'Emmons Reagents as Azomethine Ylide Analogues: Pyrrole Synthesis via (3 + 2) Cycloaddition. Organic Letters, 2010, 12, 4916-4919.	4.6	63
22	An Electrophilic Approach to the Palladium-Catalyzed Carbonylative C–H Functionalization of Heterocycles. Journal of the American Chemical Society, 2015, 137, 12050-12054.	13.7	60
23	A palladium-catalysed multicomponent coupling approach to conjugated poly(1,3-dipoles) and polyheterocycles. Nature Communications, 2015, 6, 7411.	12.8	59
24	Simple Copper Catalysts for the Aerobic Oxidation of Amines: Selectivity Control by the Counterion. Angewandte Chemie - International Edition, 2016, 55, 15802-15806.	13.8	59
25	Modular Mesoionics: Understanding and Controlling Regioselectivity in 1,3-Dipolar Cycloadditions of Münchnone Derivatives. Journal of the American Chemical Society, 2013, 135, 17349-17358.	13.7	58
26	A Palladiumâ€Catalyzed Multicomponent Coupling Approach to Ï€â€Conjugated Oligomers: Assembling Imidazoleâ€Based Materials from Imines and Acyl Chlorides. Angewandte Chemie - International Edition, 2011, 50, 6552-6556.	13.8	56
27	Acid Chloride Synthesis by the Palladium atalyzed Chlorocarbonylation of Aryl Bromides. Chemistry - A European Journal, 2015, 21, 9550-9555.	3.3	55
28	General Approach to the Coupling of Organoindium Reagents with Imines via Copper Catalysis. Organic Letters, 2006, 8, 1991-1993.	4.6	53
29	Palladium-Catalyzed Carbonylative Cross-Coupling with Imines:  A Multicomponent Synthesis of Imidazolones. Journal of Organic Chemistry, 2008, 73, 1135-1138.	3.2	53
30	lmines in Stille-Type Cross-Coupling Reactions: A Multicomponent Synthesis ofα-Substituted Amides. Angewandte Chemie - International Edition, 2004, 43, 590-594.	13.8	47
31	A Palladium-Catalyzed Multicomponent Synthesis of Imidazolinium Salts and Imidazolines from Imines, Acid Chlorides, and Carbon Monoxide. Journal of Organic Chemistry, 2011, 76, 170-180.	3.2	46
32	Palladium atalyzed Aryl Iodide Carbonylation as a Route to Imidazoline Synthesis: Design of a Five omponent Coupling Reaction. Angewandte Chemie - International Edition, 2011, 50, 8948-8951.	13.8	45
33	Palladium-Catalyzed Carbonylation of Aryl Chlorides to Electrophilic Aroyl-DMAP Salts. ACS Catalysis, 2018, 8, 5350-5354.	11.2	44
34	Copper-Catalyzed Petasis-Type Reaction: A General Route to α-Substituted Amides From Imines, Acid Chlorides, and Organoboron Reagents. Journal of Organic Chemistry, 2012, 77, 2013-2017.	3.2	43
35	Second-Order Biomimicry: In Situ Oxidative Self-Processing Converts Copper(I)/Diamine Precursor into a Highly Active Aerobic Oxidation Catalyst. ACS Central Science, 2017, 3, 314-321.	11.3	43
36	Synthesis of a library of chiral $\hat{l}\pm$ -amino acid-based borate counteranions and their application to copper catalyzed olefin cyclopropanation. Tetrahedron: Asymmetry, 2005, 16, 1789-1799.	1.8	41

#	Article	IF	CITATIONS
37	Phospha-Münchnones: Electronic Structures and 1,3-Dipolar Cycloadditions. Journal of Organic Chemistry, 2010, 75, 4261-4273.	3.2	41
38	Insertion of Imines and Carbon Monoxide into Manganeseâ^'Alkyl Bonds:  Synthesis and Structure of a Manganeseâ^'α-Amino Acid Derivative. Organometallics, 2001, 20, 1128-1136.	2.3	39
39	Copper-Catalyzed Cross-Coupling of Imines, Acid Chlorides, and Organostannanes:Â A Multicomponent Synthesis of α-Substituted Amides. Journal of Organic Chemistry, 2005, 70, 5133-5138.	3.2	39
40	A palladium-catalyzed synthesis of (hetero)aryl-substituted imidazoles from aryl halides, imines and carbon monoxide. Chemical Science, 2017, 8, 1002-1007.	7.4	39
41	Multicomponent Synthesis of Substituted and Fused-Ring Imidazoles via Phospha-münchnone Cycloaddition. Journal of Organic Chemistry, 2015, 80, 2709-2714.	3.2	33
42	Multicomponent Coupling Approach to Cross-Conjugated Polymers from Vanillin-Based Monomers. ACS Sustainable Chemistry and Engineering, 2016, 4, 6263-6267.	6.7	33
43	A flexible approach to Pd-catalyzed carbonylations via aroyl dimethylaminopyridinium salts. Chemical Science, 2016, 7, 295-300.	7.4	33
44	Sequential Insertion of Carbon Monoxide and Imines into Nickelâ^'Methyl Bonds:Â A New Route to Imine Hydroacylation. Organometallics, 2000, 19, 4657-4659.	2.3	32
45	PEG-conjugated pyrrole-based polymers: one-pot multicomponent synthesis and self-assembly into soft nanoparticles for drug delivery. Chemical Communications, 2019, 55, 9829-9832.	4.1	32
46	Versatile Palladium-Catalyzed Approach to Acyl Fluorides and Carbonylations by Combining Visible Light- and Ligand-Driven Operations. Journal of the American Chemical Society, 2022, 144, 9413-9420.	13.7	32
47	Development and Cycloaddition Reactivity of a New Class of Pyridineâ€Based Mesoionic 1,3â€Dipole. Angewandte Chemie - International Edition, 2017, 56, 6078-6082.	13.8	30
48	Computational Study of the Palladium atalyzed Carbonylative Synthesis of Aromatic Acid Chlorides: The Synergistic Effect of P <i>t</i> Bu ₃ and CO on Reductive Elimination. Chemistry - A European Journal, 2016, 22, 15107-15118.	3.3	27
49	Palladium-Catalyzed, Multicomponent Approach to β-Lactams via Aryl Halide Carbonylation. Journal of Organic Chemistry, 2016, 81, 12106-12115.	3.2	27
50	A Nickel-Based, Tandem Catalytic Approach to Isoindolinones from Imines, Aryl Iodides, and CO. Organometallics, 2015, 34, 1802-1805.	2.3	26
51	Activation of Carbonâ^'Oxygen Bonds by Palladium:  Toward a Mild, Catalytic Approach to α-Amino Acid Derivatives. Organic Letters, 2007, 9, 4395-4397.	4.6	25
52	Copperâ€Catalyzed Multicomponent Coupling of Organoindium Reagents with Nitrogenâ€Containing Aromatic Heterocycles. European Journal of Organic Chemistry, 2010, 2010, 3650-3656.	2.4	24
53	Palladium catalyzed synthesis of indolizines <i>via</i> the carbonylative coupling of bromopyridines, imines and alkynes. Chemical Science, 2021, 12, 2251-2256.	7.4	23
54	Transition-metal-catalyzed multicomponent coupling reactions with imines and carbon monoxide. Pure and Applied Chemistry, 2013, 85, 377-384.	1.9	22

#	Article	IF	CITATIONS
55	Palladium Catalyzed, Multicomponent Synthesis of Fused-Ring Pyrroles from Aryl Iodides, Carbon Monoxide, and Alkyne-Tethered Imines. Journal of Organic Chemistry, 2016, 81, 11145-11152.	3.2	21
56	Chiral Phosphorus-Based 1,3-Dipoles: A Modular Approach to Enantioselective 1,3-Dipolar Cycloaddition and Polycyclic 2-Pyrroline Synthesis. Organic Letters, 2014, 16, 1056-1059.	4.6	19
57	Simple Copper Catalysts for the Aerobic Oxidation of Amines: Selectivity Control by the Counterion. Angewandte Chemie, 2016, 128, 16034-16038.	2.0	18
58	Design, Synthesis, and Characterization of a New Class of Amino Acid-Based Chiral Borate Counteranions. Organometallics, 2004, 23, 2838-2840.	2.3	17
59	Intramolecular C–C Bond Coupling of Nitriles to a Diimine Ligand in Group 7 Metal Tricarbonyl Complexes. Inorganic Chemistry, 2015, 54, 11441-11449.	4.0	15
60	Cyclic 1,3-Dipoles or Acyclic Phosphonium Ylides? Electronic Characterization of "MontreÌalones― Journal of the American Chemical Society, 2008, 130, 10052-10053.	13.7	14
61	Oxidative Addition of Haloalkanes to Metal Centers: A Mechanistic Investigation. Organometallics, 2014, 33, 3591-3595.	2.3	14
62	Ring-Opening Polymerization of Heterocycles with Palladium Insertion Catalysts:Â Observation of a Multifunctional Polymerization Initiator. Organometallics, 1999, 18, 3953-3955.	2.3	12
63	Novel Coupling of Two Mechanistically Distinct Polymerizations on a Single Metal Center:Â Palladium-Mediated Synthesis of Poly(norbornene)â°'Poly(THF) Block Copolymers. Macromolecules, 2000, 33, 2305-2307.	4.8	10
64	A palladium-catalyzed C–H functionalization route to ketones <i>via</i> the oxidative coupling of arenes with carbon monoxide. Chemical Science, 2020, 11, 3104-3109.	7.4	10
65	Comparison of Imine to Olefin Insertion Reactions: Generation of Five- and Six-Membered Lactams via a Nickel-Mediated CO, Olefin, CO, Imine Insertion Cascade. Organometallics, 2011, 30, 1896-1901.	2.3	9
66	Palladium-Catalyzed Stille-Type Coupling of <i>N</i> -Acyl Iminium Ions with Distannanes: A Multicomponent Synthesis of α-Amidostannanes. ACS Catalysis, 2014, 4, 843-846.	11.2	8
67	Palladium catalyzed carbonylative generation of potent, pyridine-based acylating electrophiles for the functionalization of arenes to ketones. Chemical Science, 2020, 11, 8610-8616.	7.4	8
68	Development and Cycloaddition Reactivity of a New Class of Pyridineâ€Based Mesoionic 1,3â€Dipole. Angewandte Chemie, 2017, 129, 6174-6178.	2.0	7
69	Palladium-Catalyzed Multicomponent Synthesis of 2-Imidazolines from Imines and Acid Chlorides. Molecules, 2012, 17, 13759-13768.	3.8	6
70	Mechanism of the Palladiumâ€Catalyzed Synthesis of Münchnones: The Role of Ligands in <i>N</i> â€Acyl Iminium Salt Carbonylation. Chemistry - A European Journal, 2016, 22, 15945-15954.	3.3	6
71	Decarboxylation with Carbon Monoxide: The Direct Conversion of Carboxylic Acids into Potent Acid Triflate Electrophiles. Angewandte Chemie - International Edition, 2019, 58, 5085-5089.	13.8	6
72	A Versatile Approach to Dynamic Amide Bond Formation with Imine Nucleophiles. Chemistry - A European Journal, 2020, 26, 5709-5716.	3.3	4

#	Article	IF	CITATIONS
73	Synthesis of neutral nickel–methyl complexes with monodentate imines and their sequential insertion of carbon monoxide and imine. Inorganica Chimica Acta, 2011, 369, 231-239.	2.4	3
74	Multicomponent formation route to a new class of oxygen-based 1,3-dipoles and the modular synthesis of furans. Chemical Science, 2021, 12, 15077-15083.	7.4	2
75	Decarboxylation with Carbon Monoxide: The Direct Conversion of Carboxylic Acids into Potent Acid Triflate Electrophiles. Angewandte Chemie, 2019, 131, 5139-5143.	2.0	1
76	Imines in Stille-Type Cross-Coupling Reactions: A Multicomponent Synthesis of α-Substituted Amides ChemInform, 2004, 35, no.	0.0	0
77	Synthesis of a Library Chiral α-Amino Acid-Based Borate Counteranions and Their Application to Copper Catalyzed Olefin Cyclopropanation ChemInform, 2005, 36, no.	0.0	Ο
78	Synthesis, structure and palladium coordination of ambiphilic, pyridine- and phosphine-tethered <i>N</i> -boryl imine ligands. Dalton Transactions, 2019, 48, 5766-5772.	3.3	0
79	Fragmentation and reassembly. Nature Chemistry, 2021, 13, 110-111.	13.6	0