Hiroshi Sugimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/474878/publications.pdf Version: 2024-02-01

3

#	Article	IF	CITATIONS
1	Alternating terpolymerization of carbon dioxide, propylene oxide, and various epoxides with bulky side groups for the tuning of thermal properties. Polymer Journal, 2021, 53, 121-127.	1.3	3
2	Copolymerization of carbon dioxide and oxetane catalyzed by aluminum porphyrin complex system. Journal of Polymer Science, 2021, 59, 3122-3130.	2.0	5
3	Synthesis of CO2-derived polycarbonates with high glass transition temperatures. Polymer Journal, 2018, 50, 301-307.	1.3	11
4	Alternative Copolymerization of Carbon Dioxide and Epichlorohydrin, and Successive Quaternization of Obtained Aliphatic Polycarbonate. Kobunshi Ronbunshu, 2017, 74, 534-541.	0.2	0
5	Synthesis of four- and six-armed star-shaped polycarbonates by immortal alternating copolymerization of CO ₂ and propylene oxide. Polymer Chemistry, 2016, 7, 3906-3912.	1.9	15
6	Polymer cyclization inhibits thermal decomposition of carbon-dioxide-derived poly(propylene) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 542
7	Carbon Dioxide-Derived <i>Immortal</i> Brush Macromolecules with Poly(propylene carbonate) Side Chains. Macromolecules, 2016, 49, 6810-6816.	2.2	7
8	Direct Copolymerization of CO2 and Diols. Scientific Reports, 2016, 6, 24038.	1.6	98
9	Synthesis of H-shaped carbon-dioxide-derived poly(propylene carbonate) for topology-based reduction of the glass transition temperature. Polymer Chemistry, 2014, 5, 1883-1890.	1.9	23
10	Carbon-dioxide-derived unsaturated alicyclic polycarbonate: Synthesis, characterization, and post-polymerization modification. Polymer, 2014, 55, 4832-4836.	1.8	22
11	Alternating Copolymerization of Carbon Dioxide and Epoxide by a Nickel Thiaporphyrin Complex. Kobunshi Ronbunshu, 2013, 70, 544-549.	0.2	1
12	Dual Catalyst System for Asymmetric Alternating Copolymerization of Carbon Dioxide and Cyclohexene Oxide with Chiral Aluminum Complexes: Lewis Base as Catalyst Activator and Lewis Acid as Monomer Activator. Macromolecules, 2012, 45, 8172-8192.	2.2	85
13	Isocyanurates with Planar Chirality: Design, Optical Resolution, and Isomerization. Chirality, 2012, 24, 867-878.	1.3	4
14	Planar-Chiral Metal Complexes Comprised of Square-Planar Metal and Achiral Tetradentate Ligands: Design, Optical Resolution, and Thermodynamics. Inorganic Chemistry, 2012, 51, 4134-4142.	1.9	19
15	Carbon Dioxide/Epoxide Alternating Copolymer. Seikei-Kakou, 2011, 23, 532-536.	0.0	0
16	The Cobalt Porphyrinâ^'Lewis Base System:  A Highly Selective Catalyst for Alternating Copolymerization of CO2 and Epoxide under Mild Conditions. Macromolecules, 2008, 41, 312-317.	2.2	160
17	Polymer Synthesis via Catalytic Fixation of Carbon Dioxide. Oleoscience, 2008, 8, 217-224.	0.0	0
10	Alternating Copolymerization of Carbon Dioxide and Epoxide by Zinc N-Substituted Porphyrins.	0.0	2

18Alternating Copolymerization of Carbon Dioxide and Epoxide by Zinc N-Substituted Porphyrins.
Kobunshi Ronbunshu, 2007, 64, 676-682.0.2

Нігозні Ѕидімото

#	Article	IF	CITATIONS
19	Alternating copolymerization of carbon dioxide and epoxide by dinuclear zinc Schiff base complex. Reactive and Functional Polymers, 2007, 67, 1277-1283.	2.0	19
20	Recent progress in the synthesis of polymers based on carbon dioxide. Pure and Applied Chemistry, 2006, 78, 1823-1834.	0.9	68
21	Alternating Copolymerization of Carbon Dioxide and Epoxide-Recent Advances. Kobunshi Ronbunshu, 2005, 62, 131-146.	0.2	8
22	Alternating copolymerization of carbon dioxide and epoxide catalyzed by an aluminum Schiff base-ammonium salt system. Journal of Polymer Science Part A, 2005, 43, 4172-4186.	2.5	156
23	Alternating Copolymerization of Carbon Dioxide and Epoxide [2]. The First Example of Polycarbonate Synthesis from 1-atm Carbon Dioxide by Manganese Porphyrin Studies in Surface Science and Catalysis, 2004, 153, 247-250.	1.5	1
24	Copolymerization of carbon dioxide and epoxide. Journal of Polymer Science Part A, 2004, 42, 5561-5573.	2.5	350
25	Irreversible Photoisomerization Behavior of 2-Stilbazole Covalently Bound to Porphyrin ChemInform, 2003, 34, no.	0.1	0
26	Alternating copolymerization of carbon dioxide and epoxide by manganese porphyrin: The first example of polycarbonate synthesis from 1-atm carbon dioxide. Journal of Polymer Science Part A, 2003, 41, 3549-3555.	2.5	107
27	Irreversible photoisomerization behavior of 2-stilbazoleThe IUPAC name for 2-stilbazole is 2-styrylpyridine. covalently bound to porphyrin. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 1826-1830.	1.3	8
28	Enantiomeric discrimination by novel optically active isocyanurates having peripheral amino acid units. Tetrahedron: Asymmetry, 2000, 11, 2067-2075.	1.8	17
29	Photoresponsive Molecular Switch to Control Chemical Fixation of CO2. Journal of the American Chemical Society, 1999, 121, 2325-2326.	6.6	82
30	Polymerization by Metalloporphyrin and Related Complexes. Advances in Polymer Science, 1999, , 39-119.	0.4	36
31	Lanthanoid alkoxide as a novel initiator for the synthesis of polyester via polymerization of ketenes. Macromolecular Chemistry and Physics, 1998, 199, 1651-1655.	1.1	6
32	Carbon dioxide fixation with lanthanoid complex. Studies in Surface Science and Catalysis, 1998, 114, 503-504.	1.5	0
33	Design of Novel Initiator by Transformation of the Growing Species in Anionic Polymerization of Heterocumulene. Kobunshi, 1998, 47, 84-84.	0.0	Ο
34	Controlled macromolecular synthesis by the nucleophile/lewis acid binary systems. Macromolecular Symposia, 1997, 118, 169-175.	0.4	1
35	Polymerization of Isocyanate at Room Temperature, Lanthanoid Alkoxide as Novel Initiator. Journal of Macromolecular Science - Pure and Applied Chemistry, 1997, 34, 1907-1920.	1.2	9
36	Lewis Acid-Driven Accelerated Living Polymerization of Lactones Initiated with Aluminum Porphyrins. Chemoselective Activation of Ester Groups by Lewis Acid. Macromolecules, 1997, 30, 57-62.	2.2	35

#	Article	IF	CITATIONS
37	Stepped-up reactivity of a simple lanthanoid initiator. Polymerization of methyl methacrylate initiated with a lanthanoid alkoxide – ketene system. Macromolecular Chemistry and Physics, 1997, 198, 1605-1610.	1.1	13

- Accelerated Living Polymerization of Methacrylonitrile with Aluminum Porphyrin Initiators by Activation of Monomer or Growing Species. Controlled Synthesis and Properties of Poly(methyl) Tj ETQq0 0 0 rgBT 20 verlock 120 Tf 50 6 38

39	Metalloporphyrin catalysts for living and immortal polymerizations. Macromolecular Symposia, 1996, 101, 11-18.	0.4	6
40	Lanthanoid isopropoxide as a novel initiator for anionic polymerization of isocyanates. Macromolecular Rapid Communications, 1996, 17, 1-7.	2.0	31
41	The Control of Living Anionic Polymerization by Metalloporphyrins. Bulletin of the Chemical Society of Japan, 1995, 68, 1239-1246.	2.0	7
42	Living polymerization of methacrylic esters with aluminium porphyrin initiators. Axial ligand exchange activities of alkyl- and enolate-aluminium porphyrins in relation to the polymerization Mechanism. Journal of Physical Organic Chemistry, 1995, 8, 249-257.	0.9	13
43	Unusual conformational stability of a sterically crowded atropisomer of methyl[î±4-5,10,15,20-tetrakis(2′-phenylphenyl)porphyrinato]aluminium: a possibility of CH–π bonding interactions in organometallic porphyrin systems. Journal of the Chemical Society Chemical Communications. 1995 1411-1412.	2.0	11
44	Lewis Acid-Assisted Anionic Ring-Opening Polymerization of Epoxide by the Aluminum Complexes of Porphyrin, Phthalocyanine, Tetraazaannulene, and Schiff Base as Initiators. Macromolecules, 1994, 27, 2013-2018.	2.2	84
45	Lewis acid-promoted living anionic polymerization of alkyl methacrylates initiated with aluminum porphyrins. Importance of steric balance between a nucleophile and a Lewis acid. Macromolecules, 1994, 27, 3672-3674.	2.2	9
46	Novel catalyst system for the synthesis of poly(alkylene oxide) with controlled molecular weight. Macromolecular Symposia, 1994, 88, 117-122.	0.4	1
47	Organoboron compounds as Lewis acid accelerators for the aluminum porphyrin-mediated living anionic polymerization of methyl methacrylate. Macromolecules, 1993, 26, 4751-4755.	2.2	18
48	High-speed living anionic polymerization of methacrylic esters with aluminum porphyrin initiators. Organoaluminum compounds as Lewis acid accelerators. Macromolecules, 1993, 26, 3403-3410.	2.2	42
49	Aluminum thiolate complexes of porphyrin as excellent initiators for Lewis acid-assisted high-speed living polymerization of methyl methacrylate. Macromolecules, 1993, 26, 1238-1243.	2.2	51
50	Lewis acid ―assisted high speed living anionic polymerization by the aluminum porphyrin ―Lewis acid systems. Makromolekulare Chemie Macromolecular Symposia, 1993, 67, 125-135.	0.6	9
51	Highâ€speed living polymerization with a new catalyst system based on metalloporphyrin. Makromolekulare Chemie Macromolecular Symposia, 1992, 64, 151-158.	0.6	6
52	Controlled synthesis of high molecular weight poly(methyl methacrylate) based on Lewis acid-assisted high-speed living polymerization initiated with aluminum porphyrin. Macromolecules, 1992, 25, 2280-2281.	2.2	47
53	Ring-opening polymerizations of lactone and epoxide initiated with aluminum complexes of substituted tetraphenylporphyrins. Molecular design of highly active initiators. Macromolecules, 1990, 23, 2869-2875.	2.2	49
54	Cyclophane porphyrin - I. Tetrahedron Letters, 1976, 17, 4477-4480.	0.7	12