
Ramiro Jover

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4748419/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radical Biology and Medicine, 2017, 102, 188-202.	2.9	374
2	Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells. World Journal of Gastroenterology, 2006, 12, 5834.	3.3	238
3	Human Hepatocytes in Primary Culture: The Choice to Investigate Drug Metabolism in Man. Current Drug Metabolism, 2004, 5, 443-462.	1.2	227
4	Human Hepatocytes as a Tool for Studying Toxicity and Drug Metabolism. Current Drug Metabolism, 2003, 4, 292-312.	1.2	206
5	Inhibition of VEGF expression through blockade of Hif1α and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells. British Journal of Cancer, 2013, 109, 83-91.	6.4	206
6	Downâ€regulation of human CYP3A4 by the inflammatory signal interleukin 6: molecular mechanism and transcription factors involved. FASEB Journal, 2002, 16, 1-29.	0.5	192
7	Cytochrome P450 regulation by hepatocyte nuclear factor 4 in human hepatocytes: A study using adenovirus-mediated antisense targeting. Hepatology, 2001, 33, 668-675.	7.3	184
8	Hepatocyte cell lines: their use, scope and limitations in drug metabolism studies. Expert Opinion on Drug Metabolism and Toxicology, 2006, 2, 183-212.	3.3	173
9	Hepatic cytochrome P450 down-regulation during aseptic inflammation in the mouse is interleukin 6 dependent. Hepatology, 2000, 32, 49-55.	7.3	160
10	Diclofenac induces apoptosis in hepatocytes by alteration of mitochondrial function and generation of ROS. Biochemical Pharmacology, 2003, 66, 2155-2167.	4.4	151
11	Long-term expression of differentiated functions in hepatocytes cultured in three-dimensional collagen matrix. , 1998, 177, 553-562.		125
12	Transcriptional Regulation and Expression of CYP3A4 in Hepatocytes. Current Drug Metabolism, 2007, 8, 185-194.	1.2	122
13	Re-expression of C/EBPα induces CYP2B6, CYP2C9 and CYP2D6 genes in HepG2 cells. FEBS Letters, 1998, 431, 227-230.	2.8	119
14	Cytotoxicity Evaluation of the First Ten MEIC Chemicals: Acute Lethal Toxicity in Man Predicted by Cytotoxicity in Five Cellular Assays and by Oral LD50 Tests in Rodents. ATLA Alternatives To Laboratory Animals, 1989, 17, 83-100.	1.0	105
15	Quercetin ameliorates dysregulation of lipid metabolism genes via the PI3K/AKT pathway in a dietâ€induced mouse model of nonalcoholic fatty liver disease. Molecular Nutrition and Food Research, 2015, 59, 879-893.	3.3	102
16	Transcriptional Regulation of Human CYP3A4 Basal Expression by CCAAT Enhancer-Binding Protein α and Hepatocyte Nuclear Factor-3î³. Molecular Pharmacology, 2003, 63, 1180-1189.	2.3	97
17	Quantitative RT-PCR Measurement of Human Cytochrome P-450s: Application to Drug Induction Studies. Archives of Biochemistry and Biophysics, 2000, 376, 109-116.	3.0	93
18	Human mesenchymal stem cells from adipose tissue: Differentiation into hepatic lineage. Toxicology in Vitro, 2007, 21, 324-329.	2.4	91

Ramiro Jover

#	Article	IF	CITATIONS
19	Sensitive Markers Used to Identify Compounds That Trigger Apoptosis in Cultured Hepatocytes. Toxicological Sciences, 2002, 65, 299-308.	3.1	82
20	Foxa1 Reduces Lipid Accumulation in Human Hepatocytes and Is Down-Regulated in Nonalcoholic Fatty Liver. PLoS ONE, 2012, 7, e30014.	2.5	77
21	Transcriptional Regulation of Cytochrome P450 Genes by the Nuclear Receptor Hepatocyte Nuclear Factor 4-Alpha. Current Drug Metabolism, 2009, 10, 508-519.	1.2	76
22	Hepatocyte vitamin D receptor regulates lipid metabolism and mediates experimental diet-induced steatosis. Journal of Hepatology, 2016, 65, 748-757.	3.7	75
23	Enhanced steatosis by nuclear receptor ligands: A study in cultured human hepatocytes and hepatoma cells with a characterized nuclear receptor expression profile. Chemico-Biological Interactions, 2010, 184, 376-387.	4.0	74
24	The human liver fatty acid binding protein (FABP1) gene is activated by FOXA1 and PPARα; and repressed by C/EBPα: Implications in FABP1 down-regulation in nonalcoholic fatty liver disease. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 803-818.	2.4	73
25	Evaluation of the cytotoxicity of ten chemicals on human cultured hepatocytes: Predictability of human toxicity and comparison with rodent cell culture systems. Toxicology in Vitro, 1992, 6, 47-52.	2.4	72
26	Functional Interactions between Gut Microbiota Transplantation, Quercetin, and Highâ€Fat Diet Determine Nonâ€Alcoholic Fatty Liver Disease Development in Germâ€Free Mice. Molecular Nutrition and Food Research, 2019, 63, e1800930.	3.3	71
27	Hepatic Cell Lines for Drug Hepatotoxicity Testing: Limitations and Strategies to Upgrade their Metabolic Competence by Gene Engineering. Current Drug Metabolism, 2013, 14, 946-968.	1.2	66
28	Transcriptional Activation of CYP2C9, CYP1A1, and CYP1A2 by Hepatocyte Nuclear Factor 4α Requires Coactivators Peroxisomal Proliferator Activated Receptor-γ Coactivator 1α and Steroid Receptor Coactivator 1. Molecular Pharmacology, 2006, 70, 1681-1692.	2.3	63
29	Expression and induction of a large set of drug-metabolizing enzymes by the highly differentiated human hepatoma cell line BC2. FEBS Journal, 2001, 268, 1448-1459.	0.2	62
30	Transcriptional Regulation of the Human Hepatic CYP3A4: Identification of a New Distal Enhancer Region Responsive to CCAAT/Enhancer-Binding Protein β Isoforms (Liver Activating Protein and Liver) Tj ETQqO 0	02gBT /0	venilock 10 T
31	Underexpressed Coactivators PGC1α AND SRC1 Impair Hepatocyte Nuclear Factor 4α Function and Promote Dedifferentiation in Human Hepatoma Cells. Journal of Biological Chemistry, 2006, 281, 29840-29849.	3.4	55
32	ATF5 Is a Highly Abundant Liver-Enriched Transcription Factor that Cooperates with Constitutive Androstane Receptor in the Transactivation of <i>CYP2B6</i> : Implications in Hepatic Stress Responses. Drug Metabolism and Disposition, 2008, 36, 1063-1072.	3.3	55
33	Advantageous use of HepaRG cells for the screening and mechanistic study of drug-induced steatosis. Toxicology and Applied Pharmacology, 2016, 302, 1-9.	2.8	55
34	Diclofenac induces apoptosis in hepatocytes. Toxicology in Vitro, 2003, 17, 675-680.	2.4	54
35	Human Upcyte Hepatocytes: Characterization of the Hepatic Phenotype and Evaluation for Acute and Long-Term Hepatotoxicity Routine Testing. Toxicological Sciences, 2016, 152, 214-229.	3.1	52
36	Non-invasive prediction of NAFLD severity: a comprehensive, independent validation of previously postulated serum microRNA biomarkers. Scientific Reports, 2018, 8, 10606.	3.3	52

RAMIRO JOVER

#	Article	IF	CITATIONS
37	Role of hepatocyte nuclear factor 3γ in the expression of human CYP2C genes. Archives of Biochemistry and Biophysics, 2004, 426, 63-72.	3.0	50
38	Limited heme synthesis in porphobilinogen deaminase-deficient mice impairs transcriptional activation of specific cytochrome P450 genes by phenobarbital. FEBS Journal, 2000, 267, 7128-7137.	0.2	49
39	Modulation of PI3K-LXRα-dependent lipogenesis mediated by oxidative/nitrosative stress contributes to inhibition of HCV replication by quercetin. Laboratory Investigation, 2014, 94, 262-274.	3.7	49
40	The Synbiotic Combination of Akkermansia muciniphila and Quercetin Ameliorates Early Obesity and NAFLD through Gut Microbiota Reshaping and Bile Acid Metabolism Modulation. Antioxidants, 2021, 10, 2001.	5.1	47
41	Intracellular glutathione in human hepatocytes incubated with S-adenosyl-L-methionine and GSH-depleting drugs. Toxicology, 1991, 70, 293-302.	4.2	46
42	Measurement of intracellular LDH activity in 96-well cultures: A rapid and automated assay for cytotoxicity studies. Cytotechnology, 1991, 13, 21-24.	0.3	43
43	Acquired resistance to the anticancer drug paclitaxel is associated with induction of cytochrome P450 2C8. Pharmacogenomics, 2006, 7, 575-585.	1.3	43
44	Semi-automatic quantitative RT-PCR to measure CYP induction by drugs in human hepatocytes. Toxicology in Vitro, 2003, 17, 643-649.	2.4	41
45	Sequential Hepatogenic Transdifferentiation of Adipose Tissue-Derived Stem Cells: Relevance of Different Extracellular Signaling Molecules, Transcription Factors Involved, and Expression of New Key Marker Genes. Cell Transplantation, 2009, 18, 1319-1340.	2.5	41
46	New microRNA Biomarkers for Drug-Induced Steatosis and Their Potential to Predict the Contribution of Drugs to Non-alcoholic Fatty Liver Disease. Frontiers in Pharmacology, 2017, 8, 3.	3.5	40
47	A simple transcriptomic signature able to predict drug-induced hepatic steatosis. Archives of Toxicology, 2014, 88, 967-982.	4.2	39
48	Increased toxicity of cocaine on human hepatocytes induced by ethanol: role of GSH. Biochemical Pharmacology, 1999, 58, 1579-1585.	4.4	38
49	Role of glutathione in the induction of apoptosis and c-fos and c-jun mRNAs by oxidative stress in tumor cells. Cancer Letters, 2004, 208, 103-113.	7.2	38
50	Evaluation of the cytotoxicity of 10 chemicals in human and rat hepatocytes and in cell lines: Correlation between in vitro data and human lethal concentration. Toxicology in Vitro, 1995, 9, 959-966.	2.4	37
51	Molecular mechanism of diclofenac hepatotoxicity: Association of cell injury with oxidative metabolism and decrease in ATP levels. Toxicology in Vitro, 1995, 9, 439-444.	2.4	35
52	Potentiation of cocaine hepatotoxicity by ethanol in human hepatocytes. Toxicology and Applied Pharmacology, 1991, 107, 526-534.	2.8	33
53	Safer chemicals using less animals: kick-off of the European ONTOX project. Toxicology, 2021, 458, 152846.	4.2	33
54	A Network Involving Gut Microbiota, Circulating Bile Acids, and Hepatic Metabolism Genes That Protects Against Nonâ€Alcoholic Fatty Liver Disease. Molecular Nutrition and Food Research, 2019, 63, e1900487.	3.3	32

RAMIRO JOVER

#	Article	IF	CITATIONS
55	Induction of 5-Aminolevulinate Synthase by Drugs Is Independent of Increased Apocytochrome P450 Synthesis. Biochemical and Biophysical Research Communications, 1996, 226, 152-157.	2.1	30
56	Cytochrome P450 and Steatosis. Current Drug Metabolism, 2009, 10, 692-699.	1.2	30
57	Acute cytotoxicity of ten chemicals in human and rat cultured hepatocytes and in cell lines: Correlation between in vitro data and human lethal concentrations. Toxicology in Vitro, 1994, 8, 47-54.	2.4	29
58	CCAAT/Enhancer-binding Protein α (C/EBPα) and Hepatocyte Nuclear Factor 4α (HNF4α) Synergistically Cooperate with Constitutive Androstane Receptor to Transactivate the Human Cytochrome P450 2B6 (CYP2B6) Gene. Journal of Biological Chemistry, 2010, 285, 28457-28471.	3.4	28
59	Glucocorticoid receptor regulates organic cation transporter 1 (OCT1, SLC22A1) expression via HNF4α upregulation in primary human hepatocytes. Pharmacological Reports, 2013, 65, 1322-1335.	3.3	28
60	Cocaine hepatotoxicity: Two different toxicity mechanisms for phenobarbital-induced and non-induced rat hepatocytes. Biochemical Pharmacology, 1993, 46, 1967-1974.	4.4	27
61	Angiopoietin-Like Protein 8 Is a Novel Vitamin D Receptor Target Gene Involved in Nonalcoholic Fatty Liver Pathogenesis. American Journal of Pathology, 2018, 188, 2800-2810.	3.8	27
62	In vitro reprogramming of pancreatic alpha cells towards a beta cell phenotype following ectopic HNF4α expression. Molecular and Cellular Endocrinology, 2015, 399, 50-59.	3.2	25
63	The Vitamin D Receptor Regulates Glycerolipid and Phospholipid Metabolism in Human Hepatocytes. Biomolecules, 2020, 10, 493.	4.0	23
64	Repression of the Nuclear Receptor Small Heterodimer Partner by Steatotic Drugs and in Advanced Nonalcoholic Fatty Liver Disease. Molecular Pharmacology, 2015, 87, 582-594.	2.3	22
65	Hnf4Î \pm is a key gene that can generate columnar metaplasia in oesophageal epithelium. Differentiation, 2017, 93, 39-49.	1.9	22
66	Advances in drug-induced cholestasis: Clinical perspectives, potential mechanisms and in vitro systems. Food and Chemical Toxicology, 2018, 120, 196-212.	3.6	22
67	Potentiation of heroin and methadone hepatotoxicity by ethanol: anin vitrostudy using cultured human hepatocytes. Xenobiotica, 1992, 22, 471-478.	1.1	21
68	Transcription factors involved in the expression of SLC28 genes in human liver parenchymal cells. Biochemical and Biophysical Research Communications, 2007, 353, 381-388.	2.1	20
69	Epistane, an anabolic steroid used for recreational purposes, causes cholestasis with elevated levels of cholic acid conjugates, by upregulating bile acid synthesis (CYP8B1) and cross-talking with nuclear receptors in human hepatocytes. Archives of Toxicology, 2020, 94, 589-607.	4.2	18
70	Preliminary results from the Scandinavian multicentre evaluation of in vitro cytotoxicity (MEIC). Toxicology in Vitro, 1990, 4, 688-691.	2.4	16
71	The histone deacetylase sirtuinÂ2 is a new player in the regulation of platelet function. Journal of Thrombosis and Haemostasis, 2015, 13, 1335-1344.	3.8	16
72	Molecular mechanisms of hepatotoxic cholestasis by clavulanic acid: Role of NRF2 and FXR pathways. Food and Chemical Toxicology, 2021, 158, 112664.	3.6	15

RAMIRO JOVER

#	Article	IF	CITATIONS
73	Predicting drug-induced cholestasis: preclinical models. Expert Opinion on Drug Metabolism and Toxicology, 2018, 14, 721-738.	3.3	12
74	In Vitro Toxicity to Two Cellular Systems of the First Ten Chemicals on the MEIC List. ATLA Alternatives To Laboratory Animals, 1990, 17, 218-223.	1.0	11
75	S-Adenosyl-L-Methionine Prevents Intracellular Glutathione Depletion by GSH-Depleting Drugs in Rat and Human Hepatocytes. Drug Investigation, 1992, 4, 46-53.	0.6	10
76	Multivariate Validation of Cell Toxicity Data: The First Ten MEIC Chemicals. ATLA Alternatives To Laboratory Animals, 1990, 17, 237-239.	1.0	9
77	Potentiation of cocaine hepatotoxicity in human hepatocytes by ethanol. Toxicology in Vitro, 1992, 6, 155-158.	2.4	8
78	Species-specific mechanisms for cholesterol 7α-hydroxylase (CYP7A1) regulation by drugs and bile acids. Archives of Biochemistry and Biophysics, 2005, 434, 75-85.	3.0	8
79	Toward Rapid Screening of Liver Grafts at the Operating Room Using Mid-infrared Spectroscopy. Analytical Chemistry, 2020, 92, 14542-14549.	6.5	8
80	The effects of buprenorphine on the metabolism of human hepatocytes. Toxicology in Vitro, 1991, 5, 219-224.	2.4	7
81	Both cholestatic and steatotic drugs trigger extensive alterations in the mRNA level of biliary transporters in rat hepatocytes: Application to develop new predictive biomarkers for early drug development. Toxicology Letters, 2016, 263, 58-67.	0.8	6
82	Can Hepatoma Cell Lines be Re-differentiated to be Used in Drug Metabolism Studies?. ATLA Alternatives To Laboratory Animals, 2004, 32, 65-74.	1.0	5
83	A Novel MicroRNA Signature for Cholestatic Drugs in Human Hepatocytes and Its Translation into Novel Circulating Biomarkers for Drug-Induced Liver Injury Patients. Toxicological Sciences, 2020, 173, 229-243.	3.1	5
84	Role of K+ and Ca2+ fluxes in the cerebroarterial vasoactive effects of sildenafil. European Journal of Pharmacology, 2008, 581, 138-147.	3.5	4
85	Expression of Liver Specific-Genes in Hepatocytes Cultured in Collagen Gel Matrix. Progress in Molecular and Subcellular Biology, 2000, 25, 89-104.	1.6	4
86	Methionine Cycle Rewiring by Targeting miR-873-5p Modulates Ammonia Metabolism to Protect the Liver from Acetaminophen. Antioxidants, 2022, 11, 897.	5.1	3
87	Valproate and Short-Chain Fatty Acids Activate Transcription of the Human Vitamin D Receptor Gene through a Proximal GC-Rich DNA Region Containing Two Putative Sp1 Binding Sites. Nutrients, 2022, 14, 2673.	4.1	3
88	PTEN Deletion in Adult Mice Induces Hypoinsulinemia With Concomitant Low Glucose Levels. Frontiers in Endocrinology, 2022, 13, 850214.	3.5	2
89	Hepatotoxicity of Opiates and Cocaine on Different Hepatic Cellular Systems. ATLA Alternatives To Laboratory Animals, 1990, 17, 240-245.	1.0	1
90	Vitamin D Receptor is Up-Regulated in NAFLD Hepatocytes and is Required for High Fat Diet-Induced Steatosis in APOE-/- Mice Liver. Journal of Hepatology, 2016, 64, S682.	3.7	1

#	Article	IF	CITATIONS
91	Transfection of Primary Hepatocytes with Liver-Enriched Transcription Factors Using Adenoviral Vectors. Methods in Molecular Biology, 2015, 1250, 213-221.	0.9	1
92	P278 REPRESSION OF THE NUCLEAR RECEPTOR SMALL HETERODIMER PARTNER (SHP) IN NAFLD: GENE REGULATION BY TRANSCRIPTION FACTORS AND STEATOTIC DRUGS. Journal of Hepatology, 2014, 60, S158.	3.7	0
93	Elimination of Vitamin D Signaling Causes Increased Mortality in a Model of Overactivation of the Insulin Receptor: Role of Lipid Metabolism. Nutrients, 2022, 14, 1516.	4.1	0