
Miriam Serena Vitiello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4748138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Terahertz Quantum Cascade Lasers as Enabling Quantum Technology. Advanced Quantum Technologies, 2022, 5, 2100082.	3.9	21
2	Spatial coherence of electrically pumped random terahertz lasers. Photonics Research, 2022, 10, 524.	7.0	3
3	Mapping the complex refractive index of single layer graphene on semiconductor or polymeric substrates at terahertz frequencies. 2D Materials, 2022, 9, 025018.	4.4	6
4	Lattice dynamics and elastic properties of black phosphorus. Physical Review B, 2022, 105, .	3.2	8
5	Selfâ€Induced Phase Locking of Terahertz Frequency Combs in a Phaseâ€Sensitive Hyperspectral Nearâ€Field Nanoscope. Advanced Science, 2022, 9, .	11.2	16
6	Physics and technology of Terahertz quantum cascade lasers. Advances in Physics: X, 2021, 6, .	4.1	21
7	Millimeter wave photonics with terahertz semiconductor lasers. Nature Communications, 2021, 12, 1427.	12.8	31
8	Self-mixing interferometry and near-field nanoscopy in quantum cascade random lasers at terahertz frequencies. Nanophotonics, 2021, 10, 1495-1503.	6.0	14
9	Chipâ€Scale Terahertz Frequency Combs through Integrated Intersubband Polariton Bleaching. Laser and Photonics Reviews, 2021, 15, 2000575.	8.7	6
10	Reshaping the emission of a THz quantum cascade laser frequency comb through an on-chip graphene modulator. , 2021, , .		0
11	Terahertz Frequency Combs: Chipâ€5cale Terahertz Frequency Combs through Integrated Intersubband Polariton Bleaching (Laser Photonics Rev. 15(6)/2021). Laser and Photonics Reviews, 2021, 15, 2170035.	8.7	0
12	Terahertz near-field nanoscopy based on detectorless laser feedback interferometry under different feedback regimes. APL Photonics, 2021, 6, .	5.7	23
13	Terahertz Near-field Nanoscopy Based on Self-mixing Interferometry with Quantum Cascade Resonators. , 2021, , .		0
14	Polarization analysis of random THz lasers. APL Photonics, 2021, 6, 070805.	5.7	2
15	Tunable, Gratingâ€Gated, Grapheneâ€Onâ€Polyimide Terahertz Modulators. Advanced Functional Materials, 2021, 31, 2008039.	14.9	31
16	Highly sensitive photodetectors at 0.6 THz based on quantum dot single electron transistors. , 2021, , .		0
17	Quantum-Dot Single-Electron Transistors as Thermoelectric Quantum Detectors at Terahertz Frequencies. Nano Letters, 2021, 21, 8587-8594.	9.1	11
18	Chip-Scalable, Room-Temperature, Zero-Bias, Graphene-Based Terahertz Detectors with Nanosecond Response Time. ACS Nano, 2021, 15, 17966-17976.	14.6	21

#	Article	IF	CITATIONS
19	Tailored nano-electronics and photonics with two-dimensional materials at terahertz frequencies. Journal of Applied Physics, 2021, 130, .	2.5	11
20	Mapping propagation of collective modes in Bi2Se3 and Bi2Te2.2Se0.8 topological insulators by near-field terahertz nanoscopy. Nature Communications, 2021, 12, 6672.	12.8	36
21	Semiconductor Nanowire Field-Effect Transistors as Sensitive Detectors in the Far-Infrared. Nanomaterials, 2021, 11, 3378.	4.1	2
22	Nanodevices at terahertz frequency based on 2D materials. JPhys Materials, 2020, 3, 014008.	4.2	14
23	Unveiling the detection dynamics of semiconductor nanowire photodetectors by terahertz near-field nanoscopy. Light: Science and Applications, 2020, 9, 189.	16.6	31
24	Terahertz Frequency Combs Exploiting an On-Chip, Solution-Processed, Graphene-Quantum Cascade Laser Coupled-Cavity. ACS Photonics, 2020, 7, 3489-3498.	6.6	26
25	Ultrafast terahertz saturable absorbers using tailored intersubband polaritons. Nature Communications, 2020, 11, 4290.	12.8	19
26	Quantum cascade laser based hybrid dual comb spectrometer. Communications Physics, 2020, 3, .	5.3	40
27	One-dimensional, surface emitting, disordered Terahertz lasers. APL Photonics, 2020, 5, 036102.	5.7	5
28	Highly efficient surface-emitting semiconductor lasers exploiting quasi-crystalline distributed feedback photonic patterns. Light: Science and Applications, 2020, 9, 54.	16.6	16
29	HBN-Encapsulated, Graphene-based, Room-temperature Terahertz Receivers, with High Speed and Low Noise. Nano Letters, 2020, 20, 3169-3177.	9.1	67
30	Thermoelectric graphene photodetectors with sub-nanosecond response times at terahertz frequencies. Nanophotonics, 2020, 10, 89-98.	6.0	43
31	Homogeneous quantum cascade lasers operating as terahertz frequency combs over their entire operational regime. Nanophotonics, 2020, 10, 181-186.	6.0	10
32	Toward new frontiers for terahertz quantum cascade laser frequency combs. Nanophotonics, 2020, 10, 187-194.	6.0	19
33	Mid-infrared, long-wave infrared, and terahertz photonics: introduction. Optics Express, 2020, 28, 14169.	3.4	4
34	Electrically Tunable Graphene-on-Polyimide Terahertz Modulators. , 2020, , .		0
35	Tracing photodetection of THz frequency light in InAs nanowire field effect transistors via near-field THz nanoscopy. , 2020, , .		0
36	Ultrafast THz intersubband polariton saturable absorber integrated with a quantum cascade frequency comb. , 2020, , .		0

#	Article	IF	CITATIONS
37	Semiconductor THz frequency combs exploiting solution processed graphene. , 2020, , .		0
38	High-speed, low-noise thermoelectric graphene detectors at terahertz frequencies. , 2020, , .		0
39	Highly efficient one-dimensional quasi-crystalline THz semiconductor lasers. , 2020, , .		0
40	Tunable and compact dispersion compensation of broadband THz quantum cascade laser frequency combs. Optics Express, 2019, 27, 20231.	3.4	32
41	Fully phase-stabilized quantum cascade laser frequency comb. Nature Communications, 2019, 10, 2938.	12.8	69
42	Near-Field THz Photocurrent Nanoscopy of InAs Nanowires FET. , 2019, , .		0
43	Fully Phase Stabilized Quantum Cascade Laser Frequency Comb. , 2019, , .		1
44	Self-Mixing Interferometry in Continuous-Wave High Power 1D and 2D QCL Random Lasers Operating at Terahertz Frequencies. , 2019, , .		0
45	THz quantum cascade laser frequency combs. , 2019, , .		0
46	Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes. Nanoscale, 2019, 11, 1995-2002.	5.6	64
47	Frequency-tunable continuous-wave random lasers at terahertz frequencies. Light: Science and Applications, 2019, 8, 43.	16.6	33
48	Fast and Sensitive Terahertz Detection Using an Antenna-Integrated Graphene pn Junction. Nano Letters, 2019, 19, 2765-2773.	9.1	144
49	Bow-Tie Cavity for Terahertz Radiation. Photonics, 2019, 6, 1.	2.0	24
50	High Dynamic Range, Heterogeneous, Terahertz Quantum Cascade Lasers Featuring Thermally Tunable Frequency Comb Operation over a Broad Current Range. ACS Photonics, 2019, 6, 73-78.	6.6	41
51	Ultrafast two-dimensional field spectroscopy of terahertz intersubband saturable absorbers. Optics Express, 2019, 27, 2248.	3.4	15
52	Aperiodic photonic architectures for high-power distributed feedback THz quantum cascade lasers. , 2019, , .		0
53	Plasmonics with two-dimensional semiconductors: from basic research to technological applications. Nanoscale, 2018, 10, 8938-8946.	5.6	79
54	Continuous-wave highly-efficient low-divergence terahertz wire lasers. Nature Communications, 2018, 9, 1122.	12.8	30

#	Article	IF	CITATIONS
55	Highly sensitive, ultrafast photo-thermoelectric graphene THz detector. , 2018, , .		3
56	Broadband heterogeneous terahertz frequency quantum cascade laser. Electronics Letters, 2018, 54, 1229-1231.	1.0	26
57	Phase-resolved terahertz self-detection near-field microscopy. Optics Express, 2018, 26, 18423.	3.4	70
58	Phase-sensitive terahertz imaging using room-temperature near-field nanodetectors. Optica, 2018, 5, 651.	9.3	23
59	Sub-wavelength near field imaging techniques at terahertz frequencies. , 2018, , .		0
60	Optoelectronic devices, plasmonics, and photonics with topological insulators. APL Materials, 2017, 5,	5.1	93
61	Terahertz saturable absorbers from liquid phase exfoliation of graphite. Nature Communications, 2017, 8, 15763.	12.8	93
62	Preface to Special Topic: Emerging materials for photonics. APL Materials, 2017, 5, 035101.	5.1	0
63	Black phosphorus nanodevices at terahertz frequencies: Photodetectors and future challenges. APL Materials, 2017, 5, .	5.1	49
64	Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging. Scientific Reports, 2017, 7, 44240.	3.3	43
65	The role of surface chemical reactivity in the stability of electronic nanodevices based on two-dimensional materials "beyond graphene―and topological insulators. FlatChem, 2017, 1, 60-64.	5.6	32
66	Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nature Nanotechnology, 2017, 12, 207-211.	31.5	174
67	Continuous-wave laser operation of a dipole antenna terahertz microresonator. Light: Science and Applications, 2017, 6, e17054-e17054.	16.6	12
68	Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation. Science Advances, 2017, 3, e1603317.	10.3	33
69	Near-Field microscopy with phase sensitive coherent detection employing quantum cascade lasers. , 2017, , .		1
70	Ultrafast photo-activation of surface polaritons in black phosphorus heterostructures. , 2017, , .		0
71	Terahertz quantum cascade dipole-antenna vertically emitting continuous wave laser. , 2017, , .		0
72	Efficient Room-temperature Terahertz Nano-detectors based on Novel 2D Materials and heterostructures. , 2016, , .		0

#	Article	IF	CITATIONS
73	Multimode, Aperiodic Terahertz Surface-Emitting Laser Resonators. Photonics, 2016, 3, 32.	2.0	10
74	Improved Tuning Fork for Terahertz Quartz-Enhanced Photoacoustic Spectroscopy. Sensors, 2016, 16, 439.	3.8	59
75	Unusually strong lateral interaction in the CO overlayer in phosphorene-based systems. Nano Research, 2016, 9, 2598-2605.	10.4	15
76	Heterostructured hBNâ€BPâ€hBN Nanodetectors at Terahertz Frequencies. Advanced Materials, 2016, 28, 7390-7396.	21.0	85
77	Low divergent, high-power, single-mode terahertz wire lasers. , 2016, , .		Ο
78	Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator. Scientific Reports, 2016, 6, 23053.	3.3	6
79	Black phosphorus and hybrid van der wall heterostructured terahertz photodetectors. , 2016, , .		1
80	New developments in THz quartz enhanced photoacoustic spectroscopy. , 2016, , .		1
81	Photonic Engineering of Quantum Cascade Lasers in the Far Infrared and Application Perspectives. , 2016, , .		0
82	Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response. Scientific Reports, 2016, 6, 20474.	3.3	117
83	Plasma-Wave Terahertz Detection Mediated by Topological Insulators Surface States. Nano Letters, 2016, 16, 80-87.	9.1	131
84	QCL-Based Real-Time Terahertz Digital Holography. , 2016, , .		0
85	Femtosecond Infrared Nano-spectroscopy with Sub-cycle Temporal Resolution. , 2016, , .		0
86	Interplay of Surface and Dirac Plasmons in Topological Insulators: The Case of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>Bi </mml:mi> </mml:mrow> <mml:mrow> <mm Physical Review Letters, 2015, 115, 216802.</mm </mml:mrow></mml:msub></mml:mrow></mml:math 	ıl:mn>2 <td>nml:mn></td>	nml:mn>
87	Tuning a microcavity-coupled terahertz laser. Applied Physics Letters, 2015, 107, 261108.	3.3	23
88	Real-time terahertz digital holography with a quantum cascade laser. Scientific Reports, 2015, 5, 13566.	3.3	85
89	Photo-generated metamaterials induce modulation of CW terahertz quantum cascade lasers. Scientific Reports, 2015, 5, 16207.	3.3	23
90	Terahertz detection of magnetic field-driven topological phase transition in HgTe-based transistors. Applied Physics Letters, 2015, 107, .	3.3	13

#	Article	IF	CITATIONS
91	Black Phosphorus Terahertz Photodetectors. Advanced Materials, 2015, 27, 5567-5572.	21.0	269
92	Ultrafast Infrared Nanoscopy with Sub-Cycle Temporal Resolution. Microscopy and Microanalysis, 2015, 21, 2163-2164.	0.4	0
93	One dimensional semiconductor nanostructures: An effective <i>active</i> -material for terahertz detection. APL Materials, 2015, 3, .	5.1	17
94	High-Q resonant cavities for terahertz quantum cascade lasers. Optics Express, 2015, 23, 3751.	3.4	13
95	THz waveguide adapters for efficient radiation out-coupling from double metal THz QCLs. Optics Express, 2015, 23, 5190.	3.4	9
96	THz saturable absorption in turbostratic multilayer graphene on silicon carbide. Optics Express, 2015, 23, 11632.	3.4	23
97	Quartz-enhanced photoacoustic sensors for H2S trace gas detection. , 2015, , .		1
98	THz Quartz-enhanced photoacoustic sensor for H_2S trace gas detection. Optics Express, 2015, 23, 7574.	3.4	76
99	Quantum cascade lasers: 20 years of challenges. Optics Express, 2015, 23, 5167.	3.4	412
100	Ultrafast field-resolved multi-THz spectroscopy on the sub-nanoparticle scale. , 2015, , .		0
101	Terahertz detection by epitaxial-graphene field-effect-transistors on silicon carbide. Applied Physics Letters, 2015, 107, .	3.3	55
102	Continuous-Wave Reflection Imaging Using Optical Feedback Interferometry in Terahertz and Mid-Infrared Quantum Cascade Lasers. IEEE Transactions on Terahertz Science and Technology, 2014, 4, 631-633.	3.1	23
103	Terahertz photodetectors based on tapered semiconductor nanowires. Applied Physics Letters, 2014, 105, .	3.3	14
104	THz imaging of free carrier density based on quantum cascade lasers under optical feedback. , 2014, , .		0
105	Towards Doppler-Free QCL-based Metrological THz Spectroscopy. , 2014, , .		0
106	Nanowire Terahertz detectors with a resonant four-leaf-clover-shaped antenna. Optics Express, 2014, 22, 8996.	3.4	17
107	Photonic quasi-crystal terahertz lasers. Nature Communications, 2014, 5, 5884.	12.8	59

108 THz detection in graphene nanotransistors. , 2014, , .

#	Article	IF	CITATIONS
109	Terahertz waveguides with low transmission losses: characterization and applications. Proceedings of SPIE, 2014, , .	0.8	2
110	High-performance room-temperature THz nanodetectors with a narrowband antenna. Proceedings of SPIE, 2014, , .	0.8	2
111	Device Concepts for Graphene-Based Terahertz Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 130-138.	2.9	118
112	A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser. Analyst, The, 2014, 139, 2079-2087.	3.5	77
113	Perfect energy-feeding into strongly coupled systems and interferometric control of polaritonÂabsorption. Nature Physics, 2014, 10, 830-834.	16.7	71
114	Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotechnology, 2014, 9, 780-793.	31.5	3,017
115	Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nature Photonics, 2014, 8, 841-845.	31.4	260
116	Terahertz probe of individual subwavelength objects in a water environment. Laser and Photonics Reviews, 2014, 8, 734-742.	8.7	8
117	High performance bilayer-graphene terahertz detectors. Applied Physics Letters, 2014, 104, .	3.3	149
118	High performance semiconductor nanowire and graphene Terahertz nanodetectors. , 2014, , .		1
119	Quartz Enhanced Photoacoustic Sensors for Trace Gas Detection in the IR and THz Spectral Range. NATO Science for Peace and Security Series B: Physics and Biophysics, 2014, , 139-151.	0.3	0
120	Terahertz Photonic Devices. NATO Science for Peace and Security Series B: Physics and Biophysics, 2014, , 91-111.	0.3	0
121	Nanowire-based field effect transistors for terahertz detection and imaging systems. Nanotechnology, 2013, 24, 214005.	2.6	40
122	Hot Electrons in THz Quantum Cascade Lasers. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34, 357-373.	2.2	7
123	Nanometer size field effect transistors for terahertz detectors. Nanotechnology, 2013, 24, 214002.	2.6	80
124	Photocurrent-based detection of terahertz radiation in graphene. Applied Physics Letters, 2013, 103, .	3.3	29
125	Distributed feedback Terahertz QCLs with a quasi-periodic Penrose patterning. , 2013, , .		0
126	Quantum-limited linewidth in THz quantum cascade lasers. Proceedings of SPIE, 2013, , .	0.8	0

#	Article	IF	CITATIONS
127	Low-Loss Hollow Waveguide Fibers for Mid-Infrared Quantum Cascade Laser Sensing Applications. Sensors, 2013, 13, 1329-1340.	3.8	42
128	Room-temperature nanowire terahertz photodetectors. Proceedings of SPIE, 2013, , .	0.8	0
129	Modes in silver-iodide-lined hollow metallic waveguides mapped by terahertz near-field time-domain microscopy. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 127.	2.1	15
130	Electronic temperatures of terahertz quantum cascade active regions with phonon scattering assisted injection and extraction scheme. Optics Express, 2013, 21, 10172.	3.4	8
131	Intrinsic stability of quantum cascade lasers against optical feedback. Optics Express, 2013, 21, 13748.	3.4	103
132	Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 25-5 THz band. Optics Express, 2013, 21, 23748.	3.4	56
133	THz QCL-Based Cryogen-Free Spectrometer for in Situ Trace Gas Sensing. Sensors, 2013, 13, 3331-3340.	3.8	49
134	THz quantum cascade laser-based quartz enhanced photo-acoustic sensor. , 2013, , .		1
135	Dispersion and attenuation in flexible dielectric-lined hollow metallic THz waveguides. , 2013, , .		0
136	Impact of thin AgI coatings on modes in cylindrical metallic waveguides for THz applications. , 2013, , .		0
137	Room temperature terahertz detectors based on semiconductor nanowire field effect transistors. , 2012, , .		0
138	Non-equilibrium longitudinal and transverse optical phonons in terahertz quantum cascade lasers. Applied Physics Letters, 2012, 100, .	3.3	24
139	Terahertz confocal microscopy with a quantum cascade laser source. Optics Express, 2012, 20, 21924.	3.4	52
140	Graphene field-effect transistors as room-temperature terahertz detectors. Nature Materials, 2012, 11, 865-871.	27.5	931
141	Coupling external cavity mid-IR quantum cascade lasers with low loss hollow metallic/dielectric waveguides. Applied Physics B: Lasers and Optics, 2012, 108, 255-260.	2.2	27
142	Contacts shielding in nanowire field effect transistors. Journal of Applied Physics, 2012, 111, 064301.	2.5	6
143	Terahetz detection by heterostructed InAs/InSb nanowire based field effect transistors. Applied Physics Letters, 2012, 101, 141103.	3.3	25
144	Quantum cascade laser: a compact, low cost, solid-state source for plasma diagnostics. Journal of Instrumentation, 2012, 7, C02018-C02018.	1.2	6

#	Article	IF	CITATIONS
145	Quantum-limited frequency fluctuations in a terahertz laser. Nature Photonics, 2012, 6, 525-528.	31.4	146
146	Room-Temperature Terahertz Detectors Based on Semiconductor Nanowire Field-Effect Transistors. Nano Letters, 2012, 12, 96-101.	9.1	171
147	Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission. Applied Physics Letters, 2012, 100, .	3.3	50
148	Se-doping dependence of the transport properties in CBE-grown InAs nanowire field effect transistors. Nanoscale Research Letters, 2012, 7, 159.	5.7	25
149	Flexible, Low-loss Waveguide Designs for Efficient Coupling to Quantum Cascade Lasers in the Far-infrared. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33, 319-326.	2.2	6
150	The intrinsic linewidth of THz quantum cascade lasers. , 2012, , .		0
151	Optical Anisotropy in Single Light-Emitting Polymer Nanofibers. Journal of Physical Chemistry C, 2011, 115, 20399-20405.	3.1	58
152	Guiding a terahertz quantum cascade laser into low-loss hollow waveguides. , 2011, , .		0
153	Nanowire-based architectures for the detection of THz radiation. , 2011, , .		0
154	High efficiency coupling of Terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides. Optics Express, 2011, 19, 1122.	3.4	25
155	Tunable Emission in THz Quantum Cascade Lasers. IEEE Transactions on Terahertz Science and Technology, 2011, 1, 76-84.	3.1	88
156	Low-loss hollow metallic waveguides efficiently coupled to Terahertz micro-ring quantum cascade lasers. , 2011, , .		0
157	Terahertz quantum cascade laser coupled with high efficiency to the low loss optical modes of cylindrical hollow-core waveguides. Proceedings of SPIE, 2011, , .	0.8	0
158	Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide. Journal of Applied Physics, 2011, 110, .	2.5	17
159	Monolithic focal plane arrays for terahertz active spectroscopic imaging: an experimental study. , 2011, , .		1
160	Impact of nonequilibrium phonons on the electron dynamics in terahertz quantum cascade lasers. Applied Physics Letters, 2010, 97, .	3.3	22
161	Non-equilibrium LO and TO phonon generation by electron transport in Terahertz quantum cascade lasers. , 2010, , .		0
162	Anisotropic heat propagation velocity in quantum cascade lasers. Applied Physics Letters, 2010, 96, 101101.	3.3	9

#	Article	IF	CITATIONS
163	Heat transport in terahertz quantum cascade lasers. Optical Engineering, 2010, 49, 111115.	1.0	2
164	Heat transfer speed and phonon related phenomena in terahertz quantum cascade lasers. , 2010, , .		0
165	Heat transfer dynamics and temperature performance degradation in terahertz quantum cascade lasers. , 2009, , .		0
166	Time of flight measurements of the nanoscale heat transfer dynamic in terahertz quantum cascade lasers. , 2009, , .		0
167	Hot electron effects and nanoscale heat transfer in Terahertz quantum cascade lasers. Proceedings of SPIE, 2009, , .	0.8	2
168	Probing quantum efficiency by laser-induced hot-electron cooling. Applied Physics Letters, 2009, 94, 021115.	3.3	21
169	Hot-electron cooling in THz quantum cascade lasers. , 2009, , .		0
170	Correlation between laser-induced hot-electron cooling and quantum efficiency in THz quantum cascade lasers. , 2009, , .		0
171	Trace gas sensing using quantum cascade lasers and optoacoustic detection. Proceedings of SPIE, 2009, , .	0.8	0
172	Nanoscale heat transfer in quantum cascade lasers. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1780-1784.	2.7	25
173	Plasma treatment effects on Si and Si/dielectric film heterostructures. Journal of Materials Processing Technology, 2008, 206, 462-466.	6.3	1
174	Temperature Dependence of Thermal Conductivity and Boundary Resistance in THz Quantum Cascade Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 431-435.	2.9	52
175	Thermal Modeling of Terahertz Quantum-Cascade Lasers: Comparison of Optical Waveguides. IEEE Journal of Quantum Electronics, 2008, 44, 680-685.	1.9	38
176	Improved thermal management of mid-IR quantum cascade lasers. Journal of Applied Physics, 2008, 103, .	2.5	35
177	Microprobe photoluminescence assessment of the wall-plug efficiency in interband cascade lasers. Journal of Applied Physics, 2008, 104, 046101.	2.5	1
178	Wide wavelength tuning of GaAsâ^•AlxGa1â^'xAs bound-to-continuum quantum cascade lasers by aluminum content control. Applied Physics Letters, 2008, 92, .	3.3	5
179	Time-resolved measurement of the local lattice temperature in terahertz quantum cascade lasers. Applied Physics Letters, 2008, 92, 101116.	3.3	28
180	Correlation between the subband electronic temperatures and the internal quantum efficiency of THz quantum cascade lasers. , 2008, , .		0

#	Article	IF	CITATIONS
181	Comparative Analysis of THz Quantum Cascade Lasers. , 2007, , .		0
182	Influence of InAs, AlAs δlayers on the optical, electronic, and thermal characteristics of strain-compensated GaInAsâ^•AlInAs quantum-cascade lasers. Applied Physics Letters, 2007, 91, .	3.3	43
183	Experimental investigation of the lattice and electronic temperatures in Ga0.47In0.53Asâ•Al0.62Ga0.38As1â°'xSbx quantum-cascade lasers. Applied Physics Letters, 2007, 90, 121109.	3.3	24
184	Terahertz quantum cascade lasers with large wall-plug efficiency. Applied Physics Letters, 2007, 90, 191115.	3.3	60
185	μ-probe photoluminescence study of mid-IR quantum cascade lasers based on antimonide ternary and quaternary barriers. Journal of Nanophotonics, 2007, 1, 013512.	1.0	0
186	High-performance terahertz quantum cascade lasers operating at 106 μm: analysis of the thermal and electronic properties. Journal of Nanophotonics, 2007, 1, 013514.	1.0	5
187	Experimental measurement of the wall-plug efficiency in THz quantum cascade lasers. , 2007, , .		0
188	Electronic and thermal properties of Sb-based QCLs operating in the first atmospheric window. , 2007,		1
189	High performance THz quantum cascade laser with different optical waveguide configurations. , 2007, , .		0
190	Comparative analysis of resonant phonon THz quantum cascade lasers. Journal of Applied Physics, 2007, 101, 086109.	2.5	44
191	Functionalized interfaces by plasma treatments on silicon and silicon dioxide substrates. Thin Solid Films, 2007, 515, 7195-7202.	1.8	4
192	Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations. Applied Physics Letters, 2006, 89, 021111.	3.3	46
193	Non equilibrium electrons in THz quantum cascade lasers. , 2006, 6133, 126.		3
194	Electronic and lattice temperatures in bound-to-continuum terahertz quantum cascade lasers. , 2006, , .		1
195	Subband electronic temperatures and electron-lattice energy relaxation in terahertz quantum cascade lasers with different conduction band offsets. Applied Physics Letters, 2006, 89, 131114.	3.3	32
196	Electron-lattice coupling in bound-to-continuum THz quantum-cascade lasers. Applied Physics Letters, 2006, 88, 241109.	3.3	38
197	Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers. Applied Physics Letters, 2005, 86, 111115.	3.3	123
198	Electronic spatial distribution of In0.53Ga0.47Asâ^•AlAs0.56Sb0.44 quantum-cascade lasers. Journal of Applied Physics, 2005, 98, 086106.	2.5	1

#	ARTICLE	IF	CITATIONS
199	Intra-Atomic Mid-IR (3.7 μm) Luminescence In ZnSe:Fe Grown By Molecular Beam Epitaxy. AlP Conference Proceedings, 2004, , .	0.4	3