Maria Morga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4748073/publications.pdf

Version: 2024-02-01

		535685	620720
38	739	17	26
papers	citations	h-index	g-index
38 all docs	38 docs citations	38 times ranked	884
an does	does citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Poly-L-Arginine Molecule Properties in Simple Electrolytes: Molecular Dynamic Modeling and Experiments. International Journal of Environmental Research and Public Health, 2022, 19, 3588.	1.2	10
2	Nanoparticle and bioparticle deposition kinetics. Advances in Colloid and Interface Science, 2022, 302, 102630.	7.0	12
3	QCM-D Investigations of Anisotropic Particle Deposition Kinetics: Evidences of the Hydrodynamic Slip Mechanisms. Analytical Chemistry, 2022, 94, 10234-10244.	3.2	8
4	Macroion molecule properties from slender body hydrodynamics. Polymers for Advanced Technologies, 2021, 32, 3900-3908.	1.6	4
5	MODYFIKACJA SUBSTRATÓW STAÅ Y CH PRZEZ KONTROLOWANÄ" ADSORPCJÄ [~] MAKROJONÓW. WiadomoÅ›ci Chemiczne, 2021, 75, 1157-1179.	0.0	O
6	pH-Induced Changes in Polypeptide Conformation: Force-Field Comparison with Experimental Validation. Journal of Physical Chemistry B, 2020, 124, 2961-2972.	1.2	29
7	Formation of Poly- <scp>I</scp> -lysine Monolayers on Silica: Modeling and Experimental Studies. Journal of Physical Chemistry C, 2020, 124, 4571-4581.	1.5	19
8	Mechanism of fibrinogen /microparticle complex deposition on solid substrates: Role of pH. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110424.	2.5	6
9	Formation of Strong Polycation (Poly[(3-allylamino-2-hydroxypropyl)trimethylammonium chloride]) Monolayers on Mica, Silica, and Gold Substrates: Modeling and Experimental Studies. Journal of Physical Chemistry C, 2019, 123, 19022-19032.	1.5	5
10	Kinetics of Poly- <scp>I</scp> -lysine Adsorption on Mica and Stability of Formed Monolayers: Theoretical and Experimental Studies. Langmuir, 2019, 35, 12042-12052.	1.6	12
11	Monolayers of silver nanoparticles obtained by green synthesis on macrocation modified substrates. Materials Chemistry and Physics, 2019, 227, 224-235.	2.0	11
12	Gold substrates of controlled roughness and electrokinetic properties formed by nanoparticle deposition. Physical Chemistry Chemical Physics, 2019, 21, 6535-6543.	1.3	7
13	Electrokinetic properties of cysteine-stabilized silver nanoparticles dispersed in suspensions and deposited on solid surfaces in the form of monolayers. Electrochimica Acta, 2019, 297, 1000-1010.	2.6	8
14	Reversible Protein Adsorption on Mixed PEO/PAA Polymer Brushes: Role of Ionic Strength and PEO Content. Langmuir, 2018, 34, 3037-3048.	1.6	33
15	Hematite/silica nanoparticle bilayers on mica: AFM and electrokinetic characterization. Physical Chemistry Chemical Physics, 2018, 20, 15368-15379.	1.3	11
16	Conformations of Poly- <scp>l</scp> -lysine Molecules in Electrolyte Solutions: Modeling and Experimental Measurements. Journal of Physical Chemistry C, 2018, 122, 23180-23190.	1.5	23
17	Formation and stability of manganese-doped ZnS quantum dot monolayers determined by QCM-D and streaming potential measurements. Journal of Colloid and Interface Science, 2017, 503, 186-197.	5.0	12
18	Formation and stability of polyelectrolyte/polypeptide monolayers determined by electrokinetic measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 302-310.	2.3	18

#	Article	IF	Citations
19	Spheroidal Microparticle Monolayers Characterized by Streaming Potential Measurements. Langmuir, 2017, 33, 9916-9925.	1.6	10
20	Silica nanoparticle monolayers on a macroion modified surface: formation mechanism and stability. Physical Chemistry Chemical Physics, 2017, 19, 22721-22732.	1.3	29
21	Homogeneous gold nanoparticle monolayersâ€"QCM and electrokinetic characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 514, 226-235.	2.3	22
22	Silica Monolayer Formation and Stability Determined by in situ Streaming Potential Measurements. Electrochimica Acta, 2016, 206, 409-418.	2.6	12
23	pH-controlled desorption of silver nanoparticles from monolayers deposited on PAH-covered mica. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	4
24	Recombinant albumin adsorption on mica studied by AFM and streaming potential measurements. Colloids and Surfaces B: Biointerfaces, 2015, 127, 192-199.	2.5	17
25	Monolayers of poly-l-lysine on mica – Electrokinetic characteristics. Journal of Colloid and Interface Science, 2015, 456, 116-124.	5 . 0	32
26	Deposition of silver nanoparticles from suspensions containing tannic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 477, 70-76.	2.3	5
27	Influence of supporting polyelectrolyte layers on the coverage and stability of silver nanoparticle coatings. Journal of Colloid and Interface Science, 2015, 445, 205-212.	5.0	19
28	Adsorption of tannic acid on polyelectrolyte monolayers determined in situ by streaming potential measurements. Journal of Colloid and Interface Science, 2015, 438, 249-258.	5.0	41
29	Silver particle monolayers â€" Formation, stability, applications. Advances in Colloid and Interface Science, 2015, 222, 530-563.	7.0	60
30	Hematite/silver nanoparticle bilayers on mica – AFM, SEM and streaming potential studies. Journal of Colloid and Interface Science, 2014, 424, 75-83.	5.0	27
31	Self-assembled silver nanoparticles monolayers on mica-AFM, SEM, and electrokinetic characteristics. Journal of Nanoparticle Research, 2013, 15, 1460.	0.8	29
32	Monolayers of cationic polyelectrolytes on mica – Electrokinetic studies. Journal of Colloid and Interface Science, 2013, 407, 196-204.	5.0	58
33	Stability of silver nanoparticle monolayers determined by in situ streaming potential measurements. Journal of Nanoparticle Research, 2013, 15, 2076.	0.8	14
34	Hematite nanoparticle monolayers on mica electrokinetic characteristics. Journal of Colloid and Interface Science, 2012, 386, 121-128.	5.0	19
35	Hematite nanoparticle monolayers on mica preparation by controlled self-assembly. Journal of Colloid and Interface Science, 2012, 386, 51-59.	5. 0	28
36	Hematite nanoparticle monolayers on mica: Characterization by colloid deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 412, 72-81.	2.3	10

#		Article	IF	CITATIONS
37	7	High density silver nanoparticle monolayers produced by colloid self-assembly on polyelectrolyte supporting layers. Journal of Colloid and Interface Science, 2011, 364, 39-48.	5.0	72
38	8	Improvement of Wetting Properties of Colloid Silica Binders. Industrial & Engineering Chemistry Research, 2010, 49, 8532-8537.	1.8	3